首页> 外文学位 >Using neuronal oscillations to investigate large-scale brain networks.
【24h】

Using neuronal oscillations to investigate large-scale brain networks.

机译:使用神经元振荡来研究大规模脑网络。

获取原文
获取原文并翻译 | 示例

摘要

The studies described here show how the spatiotemporal dynamics of neuronal oscillations can be used to investigate the large scale brain networks involved in language comprehension and attention. In addition, these studies show that the electromagnetic fields generated by active brain networks exhibit a higher-order statistical dependence---termed cross-frequency coupling or nested oscillations---which may help coordinate activity across a wide range of spatial and temporal scales. The purpose of the first chapter of this dissertation is to provide background information about oscillations needed to evaluate the empirical studies described in following chapters. In particular, the first chapter focuses on the cellular and network origins of neuronal oscillations as well as the functional roles such oscillations are suggested to play.;The second chapter describes how we examined the spatiotemporal dynamics of word processing by recording the electrocorticogram (ECoG) from the lateral frontotemporal cortex of neurosurgical patients chronically implanted with subdural electrode grids. Subjects engaged in a target detection task where proper names served as infrequent targets embedded in a stream of task-irrelevant verbs and nonwords. Verbs described actions related to the hand (e.g., throw) or mouth (e.g., blow), while unintelligible nonwords were sounds which matched the verbs in duration, intensity, temporal modulation, and power spectrum. Complex oscillatory dynamics were observed in the delta, theta, alpha, beta, low and high gamma bands in response to presentation of all stimulus types. High gamma activity (HG, 80--200 Hz) in the ECoG tracked the spatiotemporal dynamics of word processing and identified a network of cortical structures involved in early word processing. HG was used to determine the relative onset, peak, and offset times of local cortical activation during word processing. Listening to verbs compared to nonwords sequentially activates first the posterior superior temporal gyrus (STG), then the middle superior temporal gyrus (mid-STG), followed by the superior temporal sulcus (STS). We also observed strong phase-locking between pairs of electrodes in the theta band, with weaker phase-locking occurring in the delta, alpha, and beta frequency ranges. These results provide details on the first few hundred milliseconds of the spatiotemporal evolution of cortical activity during word processing and provide evidence consistent with the hypothesis that an oscillatory hierarchy coordinates the flow of information between distinct cortical regions during goal-directed behavior. The second chapter was published as (Canolty and Soltani, et al., 2007).;Chapter three shifts from language to attention. Several prior studies have shown that distinct cortical areas within the frontal and parietal lobes are important nodes in the large-scale brain network regulating attention, target detection, and vigilance. However, studies of attention often reach divergent results depending upon the methodology employed. I addressed this apparent electrophysiological-fMRI dissociation by recording the electrocorticogram (ECoG) during an auditory target detection task. ECoG high gamma (HG, 80--160 Hz) activation was observed in superior temporal areas for all auditory stimuli, while lateral frontal and parietal were selectively activated by targets as opposed to distractors, with electrodes over frontal cortex exhibiting significant HG activity before electrodes over parietal cortex. In addition, while low frequency (theta ∼ 6 Hz) phase coherence was strongest between electrode pairs exhibiting HG activity, the phase difference between ECoG electrodes depended upon both stimulus type and the inferred functional role of the cortical areas involved. In addition to suggesting that neuronal oscillations transiently modulate activity in brain networks, these results support the general method of (1) identifying functional nodes via localized HG activity and then (2) investigating the effective connectivity between nodes via low frequency phase coherence. The third chapter was presented in poster form at the 10 th International Conference on Cognitive Neuroscience (ICON X), in Bodrum, Turkey.;Chapter four, the last empirical data chapter, focuses on nested oscillations. We observed robust coupling between the high and low frequency bands of ongoing electrical activity in the human brain. In particular, the phase of the low frequency theta (4--8 Hz) rhythm modulates power in the high gamma (80--150 Hz) band of the electrocorticogram, with stronger modulation occurring at higher theta amplitudes. Furthermore, different behavioral tasks evoke distinct patterns of theta/high gamma coupling across the cortex. The results indicate that transient coupling between low and high frequency brain rhythms coordinates activity in distributed cortical areas providing a mechanism for effective communication during cognitive processing in humans. The fourth chapter as published as (Canolty, et al., 2006).;The final chapter notes several trends and pursues their implications, before concluding that the theme of oscillations provide an ideal platform from which to explore almost any aspect of nervous system function. (Abstract shortened by UMI.)
机译:这里描述的研究表明,神经元振荡的时空动态如何可用于调查与语言理解和注意力有关的大规模脑网络。此外,这些研究表明,活跃的大脑网络产生的电磁场表现出较高的统计依赖性(称为跨频耦合或嵌套振荡),这可能有助于在广泛的时空尺度上协调活动。本文第一章的目的是提供有关振荡的背景信息,以评估以下各章所述的经验研究。特别是,第一章着重于神经元振荡的细胞和网络起源,以及这种振荡被建议发挥的功能作用;第二章介绍了我们如何通过记录脑电图(ECoG)来检查文字处理的时空动态。长期植入硬膜下电极网格的神经外科患者的额颞叶外侧皮层。从事目标检测任务的对象,其中专有名称用作嵌入与任务无关的动词和非单词流中的不经常出现的目标。动词描述了与手(例如,投掷)或嘴巴(例如,击打)有关的动作,而难以理解的非单词是在持续时间,强度,时间调制和功率谱上与动词匹配的声音。响应于所有刺激类型的呈现,在δ,θ,α,β,低和高γ谱带中观察到了复杂的振荡动力学。 ECoG中的高伽马活动(HG,80--200 Hz)跟踪文字处理的时空动态,并确定了涉及早期文字处理的皮质结构网络。 HG用于确定文字处理过程中局部皮层激活的相对发生时间,峰值和偏移时间。与非单词相比,听动词会先激活后颞上回(STG),然后激活中颞上回(STG),再激活颞上沟(STS)。我们还观察到在θ带中的成对电极之间存在很强的锁相,而在δ,α和β频率范围内则存在较弱的锁相。这些结果提供了在文字处理过程中皮质活动的时空演变的最初几百毫秒的详细信息,并提供了与以下假设相一致的证据:振荡层次结构在目标定向行为期间协调了不同皮质区域之间的信息流。第二章发表为(Canolty and Soltani,et al。,2007);第三章从语言到注意力的转变。先前的一些研究表明,额叶和顶叶内的不同皮质区域是调节注意力,目标检测和警惕性的大规模脑网络中的重要节点。但是,根据所采用的方法,对注意力的研究通常会得出不同的结果。我通过在听觉目标检测任务期间记录心电图(ECoG)解决了这种明显的电生理功能性MRI分离。在所有听觉刺激的上颞区均观察到ECoG高伽玛(HG,80--160 Hz)激活,而目标侧叶和顶叶被靶标选择性地激活而不是牵张器激活,额叶皮层上方的电极在电极之前表现出显着的HG活性在顶叶皮质。此外,尽管在显示HG活性的电极对之间低频(θ〜6 Hz)相干性最强,但ECoG电极之间的相差取决于刺激类型和所涉及的皮层区域的功能作用。这些结果除了表明神经元振荡会暂时调节大脑网络的活动外,这些结果还支持以下一般方法:(1)通过局部HG活动识别功能节点,然后(2)通过低频相位相干性研究节点之间的有效连通性。第三章以海报的形式在土耳其博德鲁姆举行的第十届国际认知神经科学会议(ICON X)上发表;第四章,最后一个实证数据章,着重探讨了嵌套振荡。我们观察到人脑中正在进行的电活动的高频带和低频带之间的强耦合。特别是,低频theta(4--8 Hz)节奏的相位会调制脑电图的高伽马(80--150 Hz)频段中的功率,在更高的theta振幅下会发生更强的调制。此外,不同的行为任务会引起整个大脑皮层theta /高伽玛耦合的不同模式。结果表明,低频和高频脑节律之间的瞬时耦合协调了分布皮质区域的活动,为人类认知过程中的有效交流提供了一种机制。第四章发布为(Canolty等人,2006)。最后一章指出了几种趋势并探讨了它们的含义,然后得出结论,振荡的主题提供了一个理想的平台,从中可以探索神经系统功能的几乎任何方面。 (摘要由UMI缩短。)

著录项

  • 作者

    Canolty, Ryan Thomas.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号