首页> 外文学位 >Development of biocompatible polymer monoliths for the analysis of proteins and peptides.
【24h】

Development of biocompatible polymer monoliths for the analysis of proteins and peptides.

机译:生物相容性聚合物整体材料的开发,用于分析蛋白质和多肽。

获取原文
获取原文并翻译 | 示例

摘要

Biocompatibility is an important issue for the development of chromatographic stationary phases for the analysis of biomolecules (including proteins and peptides). A biocompatible stationary phase material is a material that resists nonspecific adsorption of biomolecules and does not interact with them in a way that would alter or destroy their structures or biochemical functions.;Protein separations by capillary size exclusion chromatography (SEC) require a monolith that is biocompatible, has sufficient pore volume, has the appropriate pore size distribution, and is rigid. Most polymer monoliths have not possessed a biomodal pore-size distribution, i.e., especially with one distribution in the macropore region and the other in the mesopore region. Furthermore, non-specific adsorption of proteins in these stationary phases has persisted as a major unresolved problem. To overcome these difficulties, a porous poly[polyethylene glycol methyl ether acrylate (PEGMEA)-co-PEGDA] monolith which can resist adsorption of both acidic and basic proteins when using an aqueous buffer without any organic solvent additives was developed. Based on this biocompatible monolith, surfactants were introduced as porogens with the hope of significantly increasing the mesopore volume within the polymer. Two types of surfactants were studied, including poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) or PPO-PEO-PPO and Brij. Pore size distributions were examined using a well-defined molecular weight range series of proteins and peptides by inverse size exclusion chromatography, which indicated relatively large volume percentages of mesopores and micropores. The two new monoliths demonstrated different SEC behaviors, low nonspecific adsorption of proteins, and high mechanical rigidity.;High density lipoprotein (HDL) is a heterogeneous class of lipoprotein particles with subspecies that differ in apolipoprotein and lipid composition, size, density, and charge. In this work, I developed a new capillary SEC method for size separation of native HDL particles from plasma using a capillary packed with BioSep-SEC-4000 particles, Three major sizes of HDL particles were separated. Additionally, capillary SEC and capillary strong anion-exchange chromatography of non-delipidated HDL were accomplished using poly(PEGMEA-co-PEGDA) and poly(AETAC-co-PEGDA) monoliths. These new LC methods using packed and monolithic stationary phases provided rapid separation of HDLs and excellent reproducibility.;The monolithic column format is a good alternative to typical spherical particle packed columns for capillary liquid chromatography of biomacromolecules. Several novel anion-exchange polymer monoliths for the analysis of proteins were synthesized for improved biocompatibility. Two novel polymeric monoliths were prepared in a single step by a simple photoinitiated copolymerization of 2-(diethylamino)ethyl methacrylate and polyethylene glycol diacrylate (PEGDA), or copolymerization of 2-(acryloyloxy)ethyl trimethylammonium chloride (AETAC) and PEGDA, in the presence of selected porogens. The resulting monoliths contained functionalities of diethylaminoethyl (DEAE) as a weak anion exchanger and quaternary amine as a strong anion exchanger, respectively. An alternative weak anion exchange monolith with DEAE functionalities was also synthesized by chemical modification after photoinitiated copolymerization of glycidyl methacrylate (GMA) and PEGDA. The dynamic binding capacities of the three monoliths were comparable or superior to values that have been reported for various other monoliths. Chromatographic performances were also similar to those provided by a modified poly(GMA-co-ethylene glycol dimethacrylate) monolith. Separations of standard proteins were achieved under gradient elution conditions using these monolithic columns. This work represents a successful attempt to prepare functionalized monoliths via direct copolymerization of monomers with desired functionalities. Compared to earlier publications, laborious surface modifications were avoided and the PEGDA crosslinker improved the biocompatibility of the monolithic backbone.
机译:生物相容性是开发用于分析生物分子(包括蛋白质和多肽)的色谱固定相的重要问题。生物相容性固定相材料是一种抗生物分子非特异性吸附并且不会以会改变或破坏其结构或生化功能的方式与之相互作用的材料;通过毛细管尺寸排阻色谱法(SEC)进行蛋白质分离需要一个整体生物相容性,具有足够的孔体积,具有适当的孔径分布,并且是刚性的。大多数聚合物整料不具有生物峰尺寸分布,即,特别是在大孔区域中具有一种分布而在中孔区域中具有另一种分布。此外,在这些固定相中蛋白质的非特异性吸附一直是主要的未解决问题。为了克服这些困难,开发了一种多孔聚[聚乙二醇甲基醚丙烯酸酯(PEGMEA)-co-PEGDA]整体料,当使用不含任何有机溶剂添加剂的水性缓冲液时,该整体料可以抵抗酸性和碱性蛋白质的吸附。基于这种生物相容性整料,将表面活性剂作为致孔剂引入,希望显着增加聚合物中的中孔体积。研究了两种类型的表面活性剂,包括聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(PEO-PPO-PEO)或PPO-PEO-PPO和Brij。使用明确定义的分子量范围系列的蛋白质和肽,通过反向尺寸排阻色谱法检查了孔径分布,这表明中孔和微孔的体积百分比相对较高。这两个新的整体展示了不同的SEC行为,低的蛋白质非特异性吸附和较高的机械刚度。高密度脂蛋白(HDL)是脂蛋白颗粒的异质类,亚种的载脂蛋白和脂质组成,大小,密度和电荷不同。在这项工作中,我开发了一种新的毛细管SEC方法,可使用装有BioSep-SEC-4000颗粒的毛细管从血浆中分离出天然HDL颗粒,从而分离出三种主要尺寸的HDL颗粒。此外,使用聚(PEGMEA-co-PEGDA)和聚(AETAC-co-PEGDA)整体柱完成了非脂质HDL的毛细管SEC和毛细管强阴离子交换色谱。这些使用填充和整体式固定相的新液相色谱方法提供了HDL的快速分离和出色的重现性。整体式色谱柱形式是用于生物大分子毛细管液相色谱的典型球形颗粒填充柱的理想替代品。合成了几种新型的用于蛋白质分析的阴离子交换聚合物整体,以改善生物相容性。通过简单的光引发的甲基丙烯酸2-(二乙氨基)乙酯和聚乙二醇二丙烯酸酯(PEGDA)的光引发共聚合,或2-(丙烯酰氧基)乙基三甲基氯化铵(AETAC)和PEGDA的共聚,一步一步制备了两种新颖的聚合物整料。存在选定的致孔剂。所得的整料分别含有作为弱阴离子交换剂的二乙基氨基乙基(DEAE)和作为强阴离子交换剂的季胺的官能度。在甲基丙烯酸缩水甘油酯(GMA)和PEGDA光引发共聚后,还通过化学修饰合成了具有DEAE官能度的弱阴离子交换整体材料。这三种整体材料的动态结合能力与其他各种整体材料所报告的值相当或更高。色谱性能也与改性聚(GMA-co-乙二醇二甲基丙烯酸酯)整体填料所提供的色谱性能相似。使用这些整体式色谱柱在梯度洗脱条件下实现了标准蛋白的分离。这项工作代表了通过具有所需官能度的单体直接共聚制备官能化整料的成功尝试。与较早的出版物相比,避免了费力的表面修饰,并且PEGDA交联剂改善了整体骨架的生物相容性。

著录项

  • 作者

    Li, Yun.;

  • 作者单位

    Brigham Young University.;

  • 授予单位 Brigham Young University.;
  • 学科 Chemistry Analytical.;Chemistry Polymer.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号