首页> 外文学位 >THE ORIGIN OF BIMODAL VOLCANISM, WEST-CENTRAL ARIZONA.
【24h】

THE ORIGIN OF BIMODAL VOLCANISM, WEST-CENTRAL ARIZONA.

机译:西莫里兹亚利桑那双峰火山的起源。

获取原文
获取原文并翻译 | 示例

摘要

Tertiary volcanic rocks in the Castaneda Hills and northwestern part of the Artillery Peak 15' quadrangles, west-central Arizona, are interbedded in predominantly continental clastic sedimentary rocks and minor limestone. Gravity glide blocks composed of Paleozoic(?) limestone and quartzite and Precambrian(?) granitic rocks and a monolithologic megabreccia composed dominantly of fragments of Mesozoic(?) metavolcanic rocks are also interbedded in the sedimentary sequence. The sediments accumulated in northwest-trending normal fault-controlled basins. The normal faults are mostly high-angle to the northeast but are low-angle listric faults to the southwest. The inverse stratigraphy represented by the megabreccia and glide block rock types indicates progressive tectonic denudation of the plastically attenuated and mylonitized gneiss of the Harcuvar metamorphic core complex, first by coalescence of listric faults to form the Rawhide Mountains detachment fault, then by "free-glide" gravity gliding.; The volcanic suite in the Castaneda Hills quadrangle is strongly bimodal; rocks with 55 to 71 weight percent SiO(,2) are absent. Five volcanic units are present: the older basalts (18.7 and 16.5 m.y.), quartz-bearing basalts (13.7 and 12.4 m.y.), rhyolite lavas and tuffs (15.1 to 10.3 m.y.), mesa-forming basalts (13.1 to 9.2 m.y.), and megacryst-bearing basalts (8.6 to 6.8 m.y.). The basalts contain groundmass olivine and titanaugite phenocrysts and are alkali-olivine basalts. Most of the rhyolites contain over 75 weight percent SiO(,2).; Sr isotopic evidence suggests that some of the basalts (('87)Sr/('86)Sr(,i) = .7036) are partial melts of upper mantle material. The chemical composition of some of the megacrysts supports a high-pressure origin (high Ca-Tsch, high Mg/Mg+Fe* in clinopyroxenes, high Al(,2)O(,3) in titanomagnetites, presence of ferrian pleonaste). Low Mg/Mg+Fe* values and presence of phenocrysts in these basalts indicate they underwent crystal fractionation prior to eruption. Other basalts with ('87)Sr/('86)Sr(,i) = .7077 and .7062 were probably derived from lower crustal granulites. The rhyolites have initial Sr ratios significantly higher than the basalts (('87)Sr/('86)Sr(,i) = .7093, .7141) indicating that they were not differentiated from the basalts. Partial melting of a 1.3 b.y.-old lower crustal granulite satisfactorily explains the isotopic ratios of the rhyolites. Shortly after emplacement of some of the rhyolites, vapor phase transfer during devitrification caused K to replace Na.; The inception of fundamentally basaltic volcanism and basin-range extension were nearly simultaneous and occurred at about 20 m.y. ago throughout the northern and southern Basin and Range provinces. Calc-alkalic volcanism locally persisted through the initial stages of basin-range faulting, but is insignificant on a province-wide scale. In some areas, basin-range deformation was manifested as low-angle listric faults within a thin suprastructure. Elsewhere, more "typical" high-angle basin-range faults penetrated to greater depths. Mid-Tertiary normal faulting occurred throughout the Basin and Range, but the extent of its development is unknown. The importance of early- or mid-Tertiary strike-slip faulting is also unknown. The only plate tectonic model which satisfactorily explains what is known about the tectonic history of the Basin and Range is an inter- or back-arc spreading model. Extension in the Southern Basin and Range resulted from a relaxation of Farallon-North American plate subduction-caused compression as the San Andreas transform system lengthened. Nearly simultaneous extension in the northern Basin and Range resulted from a slowdown in absolute velocity of the North American plate and consequent backarc spreading. The detailed history is undoubtedly more complex due to crustal inhomogeneities inherited from Paleozoic, Mesozoic, Laramide, and early- and mid-Tertiary deformational and magmatic events.
机译:卡斯塔内达山丘和炮兵峰15'四边形西北部(亚利桑那州中西部)的第三纪火山岩夹杂在主要为大陆碎屑沉积岩和少量石灰岩中。由沉积层中还嵌有由古生界(?)石灰岩,石英岩和前寒武纪(?)花岗岩组成的重力滑移块和主要由中生界(?)火山岩碎屑组成的整体式巨角砾岩。沉积物在西北趋势的正常断层控制盆地中积累。正常断层多数是向东北高角度断层,但西南断层是低角度利斯特断层。巨型角砾岩和滑移块岩类型所代表的逆地层学表明,Harcuvar变质岩心复合体的塑性减薄和成隆的片麻岩逐渐进行构造剥蚀,首先是李斯特断层合并形成罗威德山脉脱离断层,然后是“自由滑移”。重力滑行。 Castaneda Hills四边形中的火山岩是强烈双峰的。不含55至71重量百分比SiO(,2)的岩石。存在五个火山单元:较旧的玄武岩(18.7和16.5 my),含石英玄武岩(13.7和12.4 my),流纹岩熔岩和凝灰岩(15.1到10.3 my),形成台地形的玄武岩(13.1到9.2 my)和巨晶玄武岩(8.6至6.8我)。玄武岩包含陆基橄榄石和钛铁矿斑晶,并且是碱橄榄石玄武岩。大多数流纹岩含有超过75重量%的SiO(,2)。 Sr同位素证据表明,某些玄武岩(('87)Sr /('86)Sr(,i)= .7036)是上地幔物质的部分熔体。一些巨型晶体的化学成分支持高压起源(斜辉石中的高Ca-Tsch,高Mg / Mg + Fe *,钛磁铁矿中的高Al(,2)O(,3),二水铝榴石的存在。这些玄武岩中的Mg / Mg + Fe *值低,并且存在隐晶石,表明它们在喷发之前经历了晶体分级分离。 ('87)Sr /('86)Sr(,i)= .7077和.7062的其他玄武岩可能来自下地壳颗粒。流纹岩的初始Sr比明显高于玄武岩(('87)Sr /('86)Sr(,i)= .7093,.7141),表明它们与玄武岩没有区别。一个1.3 b.y.的下部地壳花岗石的部分熔融令人满意地解释了流纹岩的同位素比。放置一些流纹岩后不久,失透过程中的气相转移导致K取代Na。基本玄武质火山活动的开始和盆地范围的扩展几乎是同时发生的,发生在约20m.y。在整个北部和南部盆地和山脉省份之前。钙碱性火山岩在盆地范围断裂的初期一直持续存在,但在全省范围内微不足道。在某些地区,盆地范围的变形表现为薄的上部结构内的低角度李斯特断裂。在其他地方,更多的“典型”高角度盆地范围断层渗透到更大的深度。第三纪中部正常断裂发生在整个盆地和山脉,但其发展程度尚不清楚。第三纪或第三纪走滑断层的重要性也未知。唯一能令人满意地解释盆地和山脉构造历史的板块构造模型是弧间或后弧展布模型。随着圣安德烈亚斯(San Andreas)转换系统的延长,法拉隆-北美板块俯冲引起的压缩作用的放松导致了南部盆地和山脉的扩展。北部盆地和山脉的几乎同时伸展是由于北美板块的绝对速度减慢和随之而来的弧后扩展。无疑,由于从古生代,中生代,拉拉米特以及第三纪和第三纪的变形和岩浆事件继承的地壳不均匀性,详细的历史无疑更为复杂。

著录项

  • 作者

    SUNESON, NEIL HEDNER.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Geology.
  • 学位 Ph.D.
  • 年度 1980
  • 页码 326 p.
  • 总页数 326
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地质学;
  • 关键词

  • 入库时间 2022-08-17 11:51:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号