首页> 外文学位 >Effects of hydraulic connections on unsaturated flow in dualpermeability media
【24h】

Effects of hydraulic connections on unsaturated flow in dualpermeability media

机译:液压连接对双渗透介质中非饱和流的影响

获取原文
获取原文并翻译 | 示例

摘要

A geological medium that exhibits two distinct types of flow is known as dual-permeability medium. Unconsolidated deposits composed of coarse (> 2 mm diameter) clasts (gravel, talus, rockslide debris), engineered systems (heap leach piles, capillary barriers, rock fill), and mine/construction waste fall into this category. The large inter-clast pores that are characteristic of this type of media will drain at near zero matric potentials constraining flow to the interiors of porous clasts and/or the clast surfaces. In either case, water must pass through hydraulic bridges (porous contacts and/or pendular water) that form physical connections between neighboring clasts. Therefore, properties of hydraulic connections place a primary control on flow structure. This dissertation presents three projects designed to study the influence of hydraulic connections on unsaturated flow in dual-permeability media.;A numerical experiment performed to examine how the cross-sectional area and hydraulic conductivity of a bridge influence steady-state flow through a spherical clast is presented in the second chapter of the dissertation. The cross-sectional area of the bridges relative to that of the clast (A r) was varied across six orders of magnitude between simulations. The ratio of hydraulic conductivity between bridges and clasts (Kb/K c) was varied across 12 orders of magnitude to consider resistive, neutral, and conductive bridges. Results show a non-linear dependency of volumetric flow through the clast on both Ar and Kb/Kc. The intra-clast flow distribution shifts outwards as Ar increases. Conductive bridges promote this process and resistive bridges impede it.;The third chapter presents a series of bench-scale experiments performed to evaluate the geometry of a pendular bridge under different flow rates through it and at different inclinations. Results show that bridge size increases in a nonlinear fashion with flow rate and decreases with inclination from vertical. The vertical profile of the bridge closely resembled a parabola in all experiments, in contrast to the profile of a static bridge that resembles the arc of a circle. Bridge geometry was independent of flow history. Flow is active through the entire volume of the bridge and exhibits non-laminar characteristics.;The fourth chapter describes a series of bench-scale experiments designed to explore the influence of matrix-to-matrix hydraulic connections on two-dimensional transient wetting of a porous matrix. Cross-sectional area of the connection (Ar) relative to that of the matrix block and location of the connection relative to edges of the block were varied between trials. Results show that the rate of imbibition into the porous block nonlinearly increases with Ar. Moving the connection towards an edge of the block significantly decreases the imbibition rate. Saturation increase of the matrix block before the wetting front reaches all edges remains consistent independent of the connection. The last chapter summarizes results of the research and discusses about future research on this topic.
机译:表现出两种不同流动类型的地质介质被称为双重渗透性介质。由粗碎屑(直径大于2毫米)碎石(碎石,距骨,滑坡碎屑),工程系统(堆浸堆,毛细屏障,碎石)和矿山/建筑垃圾组成的未固结沉积物属于此类。这种介质的特征是大的碎屑间孔隙将在接近零的基质电势下流失,从而限制了向多孔碎屑和/或碎屑表面内部的流动。在任何一种情况下,水都必须通过液压桥(多孔接触和/或摆动水),这些桥在相邻碎屑之间形成物理连接。因此,液压连接的特性是对流动结构的主要控制。本论文提出了三个项目,旨在研究双渗透介质中水力连接对非饱和流的影响。进行数值实验,以研究桥梁的横截面积和水力传导率如何影响球状劈裂的稳态流。在论文的第二章中介绍。在模拟之间,桥梁的横截面面积相对于桅杆的横截面面积跨六个数量级变化。桥和垫板之间的水力传导率之比(Kb / K c)在12个数量级上变化,以考虑电阻,中性和导电桥。结果表明,流经金属块的体积流量对Ar和Kb / Kc均呈非线性关系。随着Ar的增加,熔体内流动分布向外移动。导电桥促进了这一过程,而电阻桥则阻碍了这一过程。第三章介绍了一系列的台式实验,以评估摆式桥在不同流量和不同倾角下的几何形状。结果表明,桥的大小随着流量的增加呈非线性增加,而随着垂直方向的倾斜而减小。在所有实验中,桥的垂直轮廓都非常类似于抛物线,而静态桥的轮廓类似于圆弧。桥梁的几何形状与流动历史无关。流动贯穿整个桥体,并表现出非层状特性。第四章介绍了一系列实验规模的实验,旨在探讨矩阵到矩阵的液压连接对二维瞬态润湿的影响。多孔基质。在试验之间,连接的横截面积(Ar)相对于矩阵块的横截面积以及连接的相对于块边缘的位置有所不同。结果表明,随着Ar的增加,多孔块体中的吸收速率非线性增加。将连接移向块的边缘会大大降低吸收速率。独立于连接,在润湿前沿到达所有边缘之前矩阵块的饱和度增加保持一致。最后一章总结了研究结果,并讨论了有关该主题的未来研究。

著录项

  • 作者

    Jayakody, Jeevan Anuradha.;

  • 作者单位

    University of Nevada, Las Vegas.;

  • 授予单位 University of Nevada, Las Vegas.;
  • 学科 Hydrologic sciences.;Geology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 78 p.
  • 总页数 78
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号