-1, where J(,(nu))(z) denotes the Bessel function of the first kind of order (nu). Define the zet'/> ON A ZETA-FUNCTION ASSOCIATED WITH BESSEL'S EQUATION.
首页> 外文学位 >ON A ZETA-FUNCTION ASSOCIATED WITH BESSEL'S EQUATION.
【24h】

ON A ZETA-FUNCTION ASSOCIATED WITH BESSEL'S EQUATION.

机译:与贝塞尔方程有关的齐塔函数。

获取原文
获取原文并翻译 | 示例

摘要

Let j(,n)((nu)) denote the nth positive zero of J((nu),z) = z('-(nu))J(,(nu))(z), n = 1,2,..., (nu) > -1, where J(,(nu))(z) denotes the Bessel function of the first kind of order (nu). Define the zeta-function z((nu),s) by.;It is easy to show that z((nu),s) is analytic in the half-plane (sigma) > 0 except for a simple pole at s = 1 with residue 1/(pi).;Since z(1/2,s) = (pi)('-s)(zeta)(s), where (zeta)(s) denotes the Riemann zeta-function, it is natural to ask where the zeros are in right half-planes and whether or not z((nu),s) has a meromorphic continuation to the whole s-plane.;Concerning zeros, we prove that z((nu),s) has no zeros in the half-plane (sigma) > 1/p if and only if a certain space of functions, defined in terms of a generalized "fractional part" function for the sequence of numbers j(,n)((nu))/j(,1)((nu)), n = 1,2,..., is dense in L('p)({0,1}), the space of measurable complex-valued functions on {0,1} with finite p-norm. This generalizes a theorem of Beurling for (zeta)(s). Indeed, we prove that this theorem holds for a zeta-function of the form.;(DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI).;(DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI).;where (lamda)(,n) = (LAMDA)n + 0(1) as n tends to (INFIN), (LAMDA) denoting a positive constant, and 0 < (lamda)(,n) < (lamda)(,n+1), n = 1,2,... .;Concerning meromorphic continuation to the s-plane, we prove that z((nu),s) has such a continuation with its only (possible) singularities being simple poles at s = 1,-3,-3,... . We also show that the residues and values of z((nu),s) at negative integers are simply expressed in terms of a sequence of polynomials (in (nu) with rational coefficients) that satisfy a quadratic recursion relation.;We also prove that z((nu),s) has an analytic continuation in (nu) to the slit plane (OMEGA) = (//C)(FDIAG)(-(INFIN),-1}, for each s in the half-plane (sigma) > 1. Since it is easy to show that z((nu),s) is analytic in the half-plane (sigma) > 1 for each (nu) in (OMEGA) from its definition, we conclude from a theorem of Hartogs that z((nu),s) is analytic in both variables (nu) and s in the obvious region of complex ((nu),s)-space.
机译:令j(,n)((nu))表示J((nu),z)= z('-(nu))J(,(nu))(z)的第n个正零,n = 1,2 ,...,(nu)> -1,其中J(,(nu))(z)表示第一种阶(nu)的贝塞尔函数。定义zeta函数z((nu),s)的方法很容易;除了s =处的简单极点之外,很容易证明z((nu),s)在半平面(sigma)> 0中是解析的。 1的残基为1 /(pi).;由于z(1/2,s)=(pi)('-s)(zeta)(s),其中(zeta)表示黎曼Zeta函数,因此很自然地问零在右半平面上的哪个位置以及z((nu),s)是否在整个s平面上具有亚纯连续性。关于零,我们证明z((nu),s )在且仅当以数字j(,n)((nu的广义“分数部分”函数的形式定义的)函数的特定空间确定时,在半平面(sigma)> 1 / p中没有零))/ j(,1)((nu)),n = 1,2,...,在L('p)({0,1})中密集,{ 0,1}与有限的p范数。这推广了贝塔林定理。的确,我们证明了该定理适用于以下形式的zeta函数。((省略了图表,表格或图形...请参见DAI);((省略了图表,表格或图形...请参见DAI)。其中(lamda)(,n)=(LAMDA)n + 0(1),因为n倾向于(INFIN),(LAMDA)表示正常数,而0 <(lamda)(,n)<(lamda)(, n + 1),n = 1,2,....;关于s平面的亚纯连续性,我们证明z((nu),s)具有这样的连续性,其唯一(可能)的奇点是简单极点在s = 1,-3,-3,...我们还表明,z((nu),s)在负整数处的残差和值仅用满足二次递归关系的多项式序列(在(nu)中有理系数)表示。对于一半的每个s,z((nu),s)在(nu)中具有到裂隙平面(OMEGA)=(// C)(FDIAG)(-(INFIN),-1}的解析连续性平面(sigma)>1。由于很容易证明z((nu),s)在(OMEGA)中每个(nu)的半平面(sigma)> 1中都是解析的,因此我们得出结论Hartogs定理,z((nu),s)可以在复杂((nu),s)空间的明显区域中同时在变量(nu)和s中进行分析。

著录项

  • 作者

    HAWKINS, JOHN HIROSHI.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 1983
  • 页码 81 p.
  • 总页数 81
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:51:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号