首页> 外文学位 >SOME CHARACTERISTICS OF MIDLATITUDE F LAYER STORMS GENERATED BY THERMOSPHERE - PLASMASPHERE COUPLING PROCESSES.
【24h】

SOME CHARACTERISTICS OF MIDLATITUDE F LAYER STORMS GENERATED BY THERMOSPHERE - PLASMASPHERE COUPLING PROCESSES.

机译:热球-等离子球面耦合过程产生的中层F层风暴的某些特征。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, I interpret calculations that I made to describe stormtime variations in equinoctial dayside plasma parameters when the variations are primarily caused by processes dependent upon collisional coupling between the thermosphere and the plasmasphere. The calculations are made with a computer model formed by linking two theoretical models: a pre-existing thermospheric model that describes dayside variations in thermospheric parameters during stormtime heating of the thermosphere; a plasmaspheric model which I developed to describe dayside plasmaspheric variations caused by the thermospheric variations described by the thermospheric model and by variations in a magnetospheric electric field. Both portions of the computerized storm model solve partial differential equations describing conservation of species, momentum, and energy by replacing dependent variables with expansions in time series. The thermospheric portion of the storm model solves for variations in gas temperature, horizontal wind velocity, and densities of atomic oxygen and molecular nitrogen while the plasmaspheric portion of the storm model solves for variations in ion densities of oxygen and hydrogen, ion fluxes of oxygen and hydrogen, temperatures of ions and electrons, and heat fluxes through ions and electrons. I summarize other calculations that have been used to describe variations in thermospheric and plasmaspheric parameters and note the advantages and limitations of the model calculations used to obtain results presented in this dissertation. The most significant result from my calculations is the distinction shown between temporal and spatial variations in the ion densities of oxygen and hydrogen during the evolution of an F layer storm. The distinction is latitude and altitude dependent and results from differences in the ion chemistry and altitude distributions of the ions of oxygen and hydrogen. Another important result of my investigation is the increase in calculated dayside losses of hydrogen ions when the strength of a magnetospheric electric field is increased. My calculations apply to the dayside topside plasmasphere at equinox along goemagnetic field lines that intersect Earth between geomagnetic latitudes 20(DEGREES)N-60(DEGREES)N. Recognizing the limitations of the model, I use calculations describing thermosphere-plasmasphere processes discussed in this dissertation to infer physical processes responsible for plasmaspheric variations detected from spacecraft during a specific F layer storm.
机译:在这篇论文中,我解释了当描述了等时日间等离子参数的暴风雨时间变化时所进行的计算,这些变化主要是由依赖于热层与等离子层之间碰撞耦合的过程引起的。这些计算是通过将两个理论模型联系在一起而形成的计算机模型进行的:一个预先存在的热层模型,该模型描述了热层暴雨时加热期间热层参数在白天的变化;我开发了一个等离子层模型,以描述由热层模型描述的热层变化和磁层电场变化引起的日间等离子层变化。计算机化风暴模型的两个部分通过用时间序列扩展替换因变量来求解偏微分方程,该方程描述了物种,动量和能量守恒。风暴模型的热层部分解决了气体温度,水平风速以及原子氧和分子氮密度的变化,而风暴模型的等离子层部分解决了氧和氢的离子密度,氧和氢的离子通量的变化。氢,离子和电子的温度以及通过离子和电子的热通量。我总结了用于描述热层和等离子层参数变化的其他计算方法,并指出了用于获得本文结果的模型计算的优点和局限性。根据我的计算得出的最重要的结果是,在F层风暴的演变过程中,氧和氢的离子密度在时间和空间上存在差异。这种区别取决于纬度和海拔,并且是由于氧和氢离子的离子化学和海拔分布不同而引起的。我研究的另一个重要结果是,随着磁层电场强度的增加,计算出的氢离子在日间的损失增加。我的计算适用于沿地磁纬线20(DEGREES)N-60(DEGREES)N与地球相交的地磁沿线的昼夜平顶等离子层。认识到模型的局限性,我使用计算来描述本文讨论的热球-等离子层过程,以推断造成特定F层风暴期间从航天器探测到的等离子层变化的物理过程。

著录项

  • 作者

    MILLER, NATHAN JOHN.;

  • 作者单位

    The Catholic University of America.;

  • 授予单位 The Catholic University of America.;
  • 学科 Physics Atmospheric Science.
  • 学位 Ph.D.
  • 年度 1983
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号