首页> 外文学位 >Characterization of the high power properties of piezoelectric ceramics using the burst method: Methodology, analysis, and experimental approach
【24h】

Characterization of the high power properties of piezoelectric ceramics using the burst method: Methodology, analysis, and experimental approach

机译:使用猝发法表征压电陶瓷的高功率特性:方法论,分析和实验方法

获取原文
获取原文并翻译 | 示例

摘要

Piezoelectric materials are used in a variety of high power applications such as ultrasonic motors and underwater sonar transducers. The properties of these materials are subject to the conditions in which they are applied. Therefore, the properties must be measured in comparable high power testing environments in order to achieve relevant measurements. This dissertation addresses many topics related to the burst or transient method for measuring the properties of piezoelectric materials in high power conditions using a comprehensive approach. The burst method offers several advantages over other high power measurement methods, namely, appropriate application of linear theory, short measurement time, data collection over large range of vibration levels in single measurement, simplicity in experimental application, and no heat generation/temperature rise during measurement.;This dissertation provides the derivations for measurement of the fundamental material constants from resonance and antiresonance characterization, via the force factor A and the newly termed voltage factor B. The force factor is defined as the ratio between short circuit current and edge vibration velocity during natural vibration in short circuit conditions, corresponding to the electrical resonance condition. The voltage factor is defined as the ratio between open circuit voltage and edge displacement during natural vibration in open circuit conditions, corresponding to the electrical antiresonance condition. The derivations of the force factor and the voltage factor are provided for the k31, kp, and k33 extensional modes, beginning from the appropriate constitutive equations. The force factor was found to be related to the piezoelectric stress coefficient e, and the voltage factor was found to be related to the converse piezoelectric coefficient h..;A complete methodology for calculating these material constants is explained, measuring the e, d, and s E at resonance and k and h at antiresonance. The experimental method for achieving an open circuit condition with minimal circuitry is explained via an electromechanical relay. Extensive characterization of k31 samples of commercially available hard and soft PZT compositions was presented to demonstrate the impact of the technique. e, d, k and sE was found to increase with vibration velocity, but h decreased with vibration velocity. Hard PZT demonstrated more stable properties than soft PZT. Notably, the method to determine the dielectric permittivity in high power conditions directly was considered and applied toward the experimental results.;The relationship between the elastic behavior under alternating stress of a PZT resonator and domain wall motion was analyzed using the Rayleigh law. Firstly, because existing Rayleigh law formulations in the literature apply only to a constant energy distribution, a new derivation describing the application of the law for a resonating sample, a sample with energy distribution, is performed. The change in elastic compliance sE 11 with applied stress and the change in the elastic loss tangent tan &phis; '11 with applied stress were related using the Rayleigh parameter alphaX. Utilizing the traditional Rayleigh law, the elastic response for soft and hard PZT was analyzed. Soft PZT was found to have Rayleigh type behavior; however, hard PZT exhibited higher order nonlinearity until large stress levels. Also, the Rayleigh parameter determined from the elastic loss behavior matched that of elastic compliance. This can verify the applicability of the Rayleigh law to the domain wall dynamics of the material. In order to address the discrepancy in hard PZT, the hyperbolic Rayleigh law was implemented. It accounts for reversible domain wall motion explicitly. It allows for the precise determination of the threshold stress as the ratio between the reversible domain wall contribution to the elastic compliance and the Rayleigh coefficient. It was found that the threshold stress of hard PZT is 9 times larger than that of the soft PZT measured.;A new approach to determine the high power figure of merit, Q versus vibration velocity, was discussed using calculated vibration. The method draws off of the technique of using charge measurement to estimate the displacement of an off-resonance transducer. If the force factor or voltage factor measured from low power measurements is assumed to apply to high power conditions, the vibration velocity can be calculated by measuring current in resonance or voltage in antiresonance. Because the quality factor can change by a factor of 3 and the force factor and voltage factor changes less than 7% for large vibration velocities, the error caused by using calculated vibration is expected to be small. Using samples of hard and soft PZT, it was verified that the trend of Q vs. measured vibration velocity and calculated vibration velocity are nearly identical. Therefore, vibration does not need to be measured to determine the figure of merit: this reduces the experimental complexity, which makes the method more accessible to research and production environments. Because the resonance vibration distribution for k 31 and kp resonators are fundamentally different, the stored energy density in each resonator differs for a given edge vibration condition. Therefore, the method of comparing the k 31 and kp piezoelectric resonators using energy density was shown to equate quality factor measurements for hard and soft PZT.;The practical implications of this dissertation is that it furthers the utility of the burst mode measurement to analyze the high power properties of piezoelectric materials. The force factor and voltage factor analysis create a simple framework in which to calculate material properties from experimental measurements. The complete characterization of k31 mode piezoelectric resonators was shown to demonstrate the practical capability of the burst mode to provide comprehensive characterization of the electromechanical properties. The burst mode generates no temperature variation in the sample, therefore, scientific analysis of the properties from high power measurements can be correlated to internal stress levels. The Rayleigh law was specifically adapted to provide the method of analysis regarding reversible and irreversible domain wall motion. Finally, a simplified measurement approach to determine perhaps the most crucial high power figure of merit, quality factor versus vibration velocity, was presented using calculated vibration.
机译:压电材料可用于各种高功率应用,例如超声马达和水下声纳传感器。这些材料的特性取决于其应用条件。因此,必须在可比较的高功率测试环境中测量性能,以实现相关的测量。本论文解决了与爆裂或瞬态方法有关的许多主题,该方法使用一种综合方法来测量大功率条件下压电材料的性能。与其他大功率测量方法相比,猝发方法具有几个优点,即,线性理论的适当应用,测量时间短,单次测量中振动水平范围大的数据收集,实验应用的简便性以及在测试过程中没有发热/温度升高本文通过力因数A和新近的电压因数B,从共振和反共振特性的测量中推导了基本材料常数的测量。力因数定义为短路电流与边缘振动速度之比。在短路条件下的自然振动期间,对应于电谐振条件。电压因数定义为开路条件下自然振动过程中开路电压与边缘位移之间的比率,对应于反电谐振条件。从适当的本构方程开始,为k31,kp和k33扩展模式提供了力因数和电压因数的推导。发现力因数与压电应力系数e有关,而电压因数与逆压电系数h有关。.;解释了计算这些材料常数的完整方法,测量e,d, s E处于共振状态,k和h处于反共振状态。通过机电继电器说明了以最少的电路实现开路条件的实验方法。介绍了k31样品的市售硬质和软质PZT组合物的广泛表征,以证明该技术的影响。发现e,d,k和sE随着振动速度增加,而h随着振动速度减小。硬PZT表现出比软PZT更稳定的性能。值得注意的是,直接考虑了在高功率条件下确定介电常数的方法,并将其应用于实验结果。;使用瑞利定律分析了PZT谐振器在交变应力下的弹性行为与畴壁运动之间的关系。首先,由于文献中现有的瑞利定律公式仅适用于恒定的能量分布,因此进行了一个新的推导,描述了该定律在共振样品(具有能量分布的样品)中的应用。弹性顺应性sE 11随着施加应力的变化以及弹性损耗角正切tanφ的变化。 '11与施加的应力通过瑞利参数alphaX相关。利用传统的瑞利定律,分析了软,硬PZT的弹性响应。发现软PZT具有瑞利型行为;然而,硬PZT表现出更高阶的非线性,直到大应力水平。而且,由弹性损失行为确定的瑞利参数与弹性柔量的参数匹配。这可以验证瑞利定律对材料的畴壁动力学的适用性。为了解决硬PZT中的差异,实施了双曲瑞利定律。它明确说明了可逆的畴壁运动。它允许精确确定阈值应力,作为可逆畴壁对弹性柔度的贡献与瑞利系数之间的比率。结果发现,硬质PZT的阈值应力比软质PZT的阈值应力大9倍。讨论了一种通过计算振动来确定高功率品质因数Q与振动速度的新方法。该方法借鉴了使用电荷测量来估计失谐换能器的位移的技术。如果假定从低功率测量中测得的力因数或电压因数适用于高功率条件,则可以通过测量谐振电流或反谐振电压来计算振动速度。对于大的振动速度,由于品质因数可以改变3倍,并且力因数和电压因数的变化小于7%,因此使用计算的振动引起的误差预计会很小。使用硬PZT和软PZT的样本,证实了Q与测得的振动速度和计算出的振动速度的趋势几乎相同。因此,无需测量振动来确定品质因数:这降低了实验的复杂性,这使得该方法更易于研究和生产环境使用。因为k 31和kp谐振器的谐振振动分布根本不同,所以对于给定的边缘振动条件,每个谐振器中存储的能量密度是不同的。因此,显示了使用能量密度比较k 31和kp压电谐振器的方法,等同于软硬PZT的品质因数测量。本论文的实际意义在于,它进一步提高了突发模式测量的实用性压电材料的高功率特性。力因数和电压因数分析创建了一个简单的框架,可在其中根据实验测量结果计算材料性能。显示了k31模式压电谐振器的完整特性,以证明突发模式提供机电特性的全面特性的实用能力。猝发模式不会在样品中产生温度变化,因此,高功率测量对特性的科学分析可以与内部应力水平相关。瑞利定律专门适用于提供有关可逆和不可逆畴壁运动的分析方法。最后,提出了一种简化的测量方法,该方法可使用计算出的振动来确定最关键的高功率品质因数(品质因数与振动速度)。

著录项

  • 作者

    Shekhani, Husain N.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号