首页> 外文学位 >An Investigation of Carbon-Based Nanomaterials for Efficient Energy Production And Delivery
【24h】

An Investigation of Carbon-Based Nanomaterials for Efficient Energy Production And Delivery

机译:碳基纳米材料用于高效能源生产和输送的研究

获取原文
获取原文并翻译 | 示例

摘要

Carbon-based nanomaterials have been demonstrated to have different potential applications in the energy industry. However, there are challenges in the realization of these applications. Chirality of single wall carbon nanotubes (SWCNTs) defines their electronic properties, and obtaining an ensemble of SWCNTs of the same chirality has been a problem studied for over two decades with no clear solution yet. Other carbon-based nanomaterials, such as carbon black aggregates, are hydrophobic in nature and potential applications in the oil and gas industry require their dispersal in an aqueous solvent. Another application in the oil and gas industry is enhanced oil recovery (EOR), and here there is a need for an inexpensive, stable, and efficient surfactant compared to currently used industrial solutions.;The challenge of producing SWCNTs of the same chirality is studied using two approaches---separation after synthesis of SWCNTs of mixed chiralities, and chemical control over chirality of as-synthesized SWCNTs. Agarose gel-based affinity chromatography was used as a means towards highly semiconductor- enriched SWCNTs using a family of nonionic surfactants. UV-vis-NIR spectroscopy, Raman spectroscopy and photoluminescence spectroscopy was used to quantify the separation efficiency of the metal- and semiconductor-enriched SWCNTs. This process is an improvement over other chromatography-based techniques at the time in that the nonionic surfactants used are less expensive, enable a higher purity of semiconductor SWCNTs (>95%) and decompose fully by simply heating in air thus leaving behind pristine SWCNTs. The second approach was based on using catalyst dopants to preferentially synthesize SWCNTs of a particular chirality at the expense of SWCNTs of other chiralities. Heterogeneous catalysis combined with the screw dislocation theory of SWCNT growth provided the background for this work, and both selenium and phosphorus were identified as chemical dopants for iron catalysts. Both selenium and phosphorus were demonstrated to have a direct effect on the average number density and length of SWCNTs, and selenium also was shown to have a direct control over the growth rate of SWCNTs. This, combined with some preliminary spectroscopy results, suggest chiral control over the carbon nanotubes.;Collaborative work on phase transfer of hydrophobic carbon-based nanomaterials into aqueous solvents for applications including saturated oil residual (SOR) detection and quantification in underground reservoirs helped recognize the potential of hydrophobically modified polymers as surfactants for EOR. Polystyrene sulfonate was chosen as the polymer of study owing to ease of availability, low cost of the precursor material and aromatic sulfonates already being studied for EOR. Controlled desulfonation of PSS was achieved by rapid heating of an aqueous solution of PSS in a microwave reactor under acidic conditions, with the reactant temperature and pH having a strong effect on the degree of desulfonation of the product ranging from 4.9% (as-obtained PSS) to 40%. Dynamic light scattering of the desulfonated PSS (termed PDS) in brine showed good stability of the polymer aggregates at temperatures as high as 150 °C, and tensiometry with aromatic oils such as toluene and aliphatic oils such as Isopar L showed good surface activity with interfacial tension going as low as 10-2 mN/m. Breakthrough experiments with sand packed columns at the lab scale, and core flooding at an independent facility confirmed good propagation of PDS through materials such as Berea sandstone, with minimal plugging and adsorption losses.
机译:碳基纳米材料已被证明在能源工业中具有不同的潜在应用。但是,这些应用程序的实现存在挑战。单壁碳纳米管(SWCNT)的手性定义了它们的电子性质,并且已经获得了具有相同手性的SWCNT的整体,这已经有二十多年的研究了,目前还没有明确的解决方案。其他基于碳的纳米材料,例如炭黑团聚物,本质上是疏水性的,在石油和天然气工业中的潜在应用要求它们分散在水性溶剂中。在石油和天然气工业中的另一种应用是提高采油率(EOR),与目前使用的工业解决方案相比,这里需要一种廉价,稳定和高效的表面活性剂。研究了生产相同手性的SWCNT的挑战使用两种方法-混合手性的SWCNT合成后分离,以及化学控制合成后的SWCNT的手性。基于琼脂糖凝胶的亲和色谱法被用作使用非离子表面活性剂家族实现高度半导体富集的SWCNT的手段。紫外可见近红外光谱,拉曼光谱和光致发光光谱用于量化富含金属和半导体的单壁碳纳米管的分离效率。该方法是对当时其他基于色谱的技术的改进,因为所使用的非离子表面活性剂价格便宜,能够实现更高纯度的半导体SWCNT(> 95%),并且只需在空气中加热即可完全分解,从而留下原始SWCNT。第二种方法是基于使用催化剂掺杂剂优先合成具有特定手性的SWCNT,而以其他手性的SWCNT为代价。非均相催化结合SWCNT生长的螺旋位错理论为这项工作提供了背景,硒和磷均被确定为铁催化剂的化学掺杂剂。硒和磷都被证明对单壁碳纳米管的平均数量密度和长度有直接影响,硒也被证明对单壁碳纳米管的生长速率具有直接的控制作用。这与一些初步的光谱学结果相结合,表明可以对碳纳米管进行手性控制。疏水性碳基纳米材料向水性溶剂中相转移的协作研究,包括在地下储层中进行饱和油残余(SOR)检测和定量,有助于识别碳纳米管。疏水改性聚合物作为EOR表面活性剂的潜力。由于易获得性,前体材料的低成本以及已经针对EOR研究的芳族磺酸盐,聚苯乙烯磺酸盐被选作研究聚合物。通过在酸性条件下在微波反应器中快速加热PSS水溶液来实现PSS的受控脱硫,反应物的温度和pH值对产物的脱硫度的影响很大,范围为4.9%(如所获得的PSS) )至40%。盐水中脱磺化PSS(称为PDS)的动态光散射表明,在高达150°C的温度下,聚合物聚集体具有良好的稳定性,并且与芳香油(如甲苯)和脂肪族油(如Isopar L)的张力测定法显示了良好的表面活性和界面活性张力低至10-2 mN / m。用实验室规模的装沙柱进行突破性实验,并在独立的设施进行岩心驱替,证实了PDS可以很好地通过Berea砂岩等材料传播,而堵塞和吸附损失却最小。

著录项

  • 作者

    Gangoli, Varun Shenoy.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Chemical engineering.;Materials science.;Polymer chemistry.;Nanotechnology.;Energy.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号