首页> 外文学位 >Frequency-Dependent Traveltime Tomography and Full Waveform Inversion for Near-Surface Seismic Refraction Data
【24h】

Frequency-Dependent Traveltime Tomography and Full Waveform Inversion for Near-Surface Seismic Refraction Data

机译:近地表地震折射数据的频率相关行进时间层析成像和全波形反演

获取原文
获取原文并翻译 | 示例

摘要

I demonstrate the utility and benefits of a combined use of frequency-dependent traveltime tomography (FDTT) and full waveform inversion (FWI) to estimate the near-surface seismic velocity that contains wavelength- and sub-wavelength-scale features. FDTT is fundamentally different from conventional ray-theory infinite-frequency traveltime tomography (IFTT) methods in the calculation of a frequency-dependent traveltime using wavelength-dependent velocity smoothing (WDVS). I justify the use of WDVS in FDTT for calculating a frequency-dependent traveltime by using forward modeling examples to show its frequency-dependent behaviors that are consistent with finite-frequency wave propagation. Compared to the conventional infinite-frequency traveltimes calculated based on ray-theory, the frequency-dependent traveltimes calculated using WDVS can better match that from synthetic seismographs.;In the combined workflow of FDTT and FWI, FDTT provides a long-wavelength background seismic velocity model as the starting model, and then FWI introduces wavelength- and sub-wavelength-scale features that allow for direct geologic interpretation of the velocity models as is usually carried out in conventional imaging using seismic reflection data. I apply this workflow to seismic data generated by a near-surface realistic synthetic velocity model representing a geologic setting consisting of unconsolidated sediment overlying faulted bedrock, successfully imaging the key model features, a thin low-velocity layer in the sediments, a steep bedrock offset and a steeply dipping low-velocity fault zone. These structures are all at the wavelength-scale that are weakly presented by conventional ray-theory methods. I then apply this workflow to 2D P- and SH-waves collected in 2011 at Rice campus with a known target consisting of a buried tunnel with concrete walls and a void space inside. FDTT inverted the P- and SH-wave picked traveltimes at 250 Hz to provide long-wavelength background velocity models as the starting models for FWI. FWI inverted 18-54 Hz P-wave data and 16-50 Hz SH-wave data to produce velocity models with sub-wavelength- and wavelength-scale features. The P- and SH-wave models image the top part of the tunnel at the correct location at a depth of 1.6 m as a high-velocity anomaly. The P-wave models also image the air in the void space of the tunnel as a low-velocity anomaly.;As a comparison, in both the realistic synthetic test and real data applications, conventional IFTT is also applied in a combined workflow with FWI. The comparisons of the inverted models show that both IFTT and FDTT models can serve as adequate starting models for FWI, but FDTT is favored over IFTT because: 1) The FDTT models better recover the magnitude of the velocity anomalies, and 2) The FDTT model serves as a better starting model for FWI, which results in a more accurate FWI velocity estimation with better recovery of the magnitude and location of the key features, particularly in the absence of usable low frequency data.
机译:我演示了结合使用频率相关的行进时间层析成像(FDTT)和全波形反演(FWI)来估计包含波长和亚波长尺度特征的近地表地震速度的实用性和好处。 FDTT与传统的射线理论无限频率行进时间层析成像(IFTT)方法从根本上不同,它是使用波长相关的速度平滑(WDVS)计算频率相关的行进时间。我通过使用正向建模示例来证明WDVS在FDTT中用于计算与频率相关的传播时间是合理的,以显示其与有限频率波传播一致的与频率相关的行为。与基于射线理论计算的传统无限频率行进时间相比,使用WDVS计算的频率相关行进时间可以更好地与合成地震仪相匹配。在FDTT和FWI的组合工作流程中,FDTT提供了长波背景地震速FWI引入了波长和亚波长尺度特征,从而可以对速度模型进行直接地质解释,这通常是在常规成像中使用地震反射数据进行的。我将此工作流程应用到由近地表真实合成速度模型生成的地震数据中,该模型代表由断层基岩上未固结的沉积物组成的地质环境,成功地成像了关键的模型特征,沉积物中薄薄的低速层,陡峭的基岩偏移陡峭的低速断层带。这些结构全都处于常规射线理论方法所难以呈现的波长范围内。然后,我将此工作流程应用于2011年在莱斯大学校园收集的二维P波和SH波,已知目标包括埋入式隧道,混凝土墙和内部空隙。 FDTT将P和SH波在250 Hz时的传播时间倒转,以提供长波背景速度模型作为FWI的初始模型。 FWI将18-54 Hz的P波数据和16-50 Hz的SH波数据反演,以产生具有亚波长和波长尺度特征的速度模型。 P波和SH波模型将隧道顶部的正确位置成像为深度为1.6 m的高速异常。 P波模型也将隧道空隙空间中的空气成像为低速异常。作为比较,在实际的合成测试和实际数据应用中,传统的IFTT也与FWI结合用于组合工作流程中。倒置模型的比较表明,IFTT和FDTT模型都可以用作FWI的适当起始模型,但是FDTT比IFTT更受青睐,因为:1)FDTT模型可以更好地恢复速度异常的大小,以及2)FDTT模型可以用作FWI的更好的初始模型,从而可以更准确地进行FWI速度估算,并且可以更好地恢复关键特征的大小和位置,尤其是在缺少可用的低频数据的情况下。

著录项

  • 作者

    Chen, Jianxiong.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Geophysics.;Environmental engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:51:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号