首页> 外文学位 >INTERNAL STRESS SUPERPLASTICITY IN METALS AND METAL-MATRIX COMPOSITES.
【24h】

INTERNAL STRESS SUPERPLASTICITY IN METALS AND METAL-MATRIX COMPOSITES.

机译:金属和金属基复合材料的内部应力超塑性。

获取原文
获取原文并翻译 | 示例

摘要

Superplasticity in polycrystalline metallic materials refers to their ability of achieving unusually high tensile deformation without failure. High strain rate sensitivity is a prerequisite for superplastic behavior. Internal stress superplasticity is associated with high internal stresses, which enhance plastic flow in materials. The high internal stresses arise either from phase transformations involving internal volume change from one phase to another phase, or from internal expansion mismatch during temperature change due to anisotropy of thermal expansion coefficients. This type of superplasticity has remained a scientific curiosity since it was first observed sixty years ago. In this investigation, the mechanical behavior of materials is evaluated as influenced by internal expansion mismatch. The experimental method used is thermal cycling with a concurrent external stress. A pure metal (zinc) as well as several metal-matrix composites were studied. The composites investigated include two particulate composites (zinc plus aluminum oxide particles) and one fiber-reinforced composite (aluminum plus silicon carbide whiskers). It has been shown that the composites behave superplastically under thermal cycling. To the best of our knowledge, this is the first successful attempt in making metal-matrix composites superplastic. High strain rate sensitivity is observed, typically equal to unity at low stresses. A proposed phenomenological equation is used to describe the behavior of the materials under thermal cycling. The equation contains a contribution of internal stress to the applied stress. The equation can describe the experimental data remarkably well. A further extension of the concept of internal stress contribution to plastic flow has been made to unify the creep predictions of Harper-Dorn and power law creep.
机译:多晶金属材料中的超塑性是指它们具有异常高的拉伸变形而不会失效的能力。高应变率敏感性是超塑性行为的前提。内应力超塑性与高内应力相关,后者会增加材料中的塑性流动。高内部应力可能是由于涉及从一个相到另一相的内部体积变化的相变,或者是由于热膨胀系数的各向异性导致的温度变化期间的内部膨胀失配。自从60年前首次发现这种超塑性以来,它一直是科学的好奇心。在这项研究中,材料的机械性能被评估为受内部膨胀失配的影响。所使用的实验方法是同时存在外部应力的热循环。研究了纯金属(锌)以及几种金属基复合材料。研究的复合材料包括两种颗粒状复合材料(锌加氧化铝颗粒)和一种纤维增强复合材料(铝加碳化硅晶须)。已经表明,复合材料在热循环下表现出超塑性。据我们所知,这是使金属基复合材料成为超塑性的首次成功尝试。观察到高应变速率敏感性,通常在低应力下等于1。提出的现象学方程用于描述材料在热循环下的行为。该方程包含内部应力对所施加应力的贡献。该方程式可以很好地描述实验数据。内部应力对塑性流动贡献的概念的进一步扩展已经统一了Harper-Dorn和幂律蠕变的蠕变预测。

著录项

  • 作者

    WU, MU-YEH.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1984
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号