首页> 外文学位 >Microkelvin thermal control system for the laser interferometer space antenna mission and beyond.
【24h】

Microkelvin thermal control system for the laser interferometer space antenna mission and beyond.

机译:Microkelvin热控制系统用于激光干涉仪和太空天线的任务。

获取原文
获取原文并翻译 | 示例

摘要

The Laser Interferometer Space Antenna (LISA) mission aims to detect directly gravitational waves from massive black holes and galactic binaries. Through detecting gravitational waves, we can study blackholes and the origin of the universe, which is inaccessible from the electromagnetic wave spectrum. It will open a new window to the universe. LISA is essentially a Michelson interferometer placed in space with a third spacecraft added. Gravitational waves are time-varying strain in space-time, which is detectable as a fractional change in a proper distance. LISA will monitor fractional changes in the interferometer arms of a nominally 5 million km. The fractional change in the arm length can be as small as 1 x 10-21 m/(m · Hz ) even for powerful sources.;LISA makes use of the gravitational reference sensors (GRS) for drag-free control and will achieve the required sensitivity through management of specific acceleration noise. The total acceleration disturbance to each proof mass, which floats at the center of each GRS, is required to be below 3 x 10-15 m/(s2 · Hz ). Thermal variations due to, for example, solar irradiation, or temperature gradients across the proof mass housing, are expected to be significant disturbance source to the LISA sensitivity requirements. Even a small temperature gradient can produce distortions in the housing structure, which results in a mass attraction force. In this thesis, I focus on developing a thermal control system that aims to achieve the temperature stability of 10 muK / Hz over 0.1 mHz to 1 Hz.;We have chosen glass-bead thermistors as the temperature sensor for feedback temperature control of the GRS. First, we created a temperature sensor design program in MATLAB that provides an optimal values of resistances in the thermistor bridge circuit for the given application. The spectral stability of the sensor achieves as low as 20 muK/ Hz at 1 mHz with a DC excitation source. The LISA thermal requirement is met by employing AC excitation and phase sensitive demodulation. Second, a passive thermal isolation system with a specially designed multilayer thermal chamber has been developed. For ground testing, the thermal specification can be met fairly readily with a massive amount of thermal mass. However, for spacecraft the thermal mass is limited, which calls for active compensation particularly in the low frequency range. In order for our test facility to simulate in-flight conditions and to compensate for solar radiation and other thermal disturbance sources we have designed it be analogous to the spacecraft structure. The temperature requirement is met to a frequency as low as 10 mHz through passive thermal isolation. Finally, to overcome the limited bandwidth of passive designs to reduce the temperature variations below 10 mHz, a model predictive control (MPC) algorithm is developed for active disturbance temperature cancellation. The system attenuates low frequency variations as low as 2 mK/ Hz at 0.1 mHz.
机译:激光干涉仪太空天线(LISA)任务旨在直接检测来自巨大黑洞和银河双星的引力波。通过检测引力波,我们可以研究黑洞和宇宙的起源,这是电磁波频谱无法达到的。它将为宇宙打开一个新窗口。 LISA本质上是一个放置在太空中的迈克尔逊干涉仪,并增加了第三个航天器。引力波是时空的时变应变,可以检测为适当距离的分数变化。 LISA将监视名义上500万公里的干涉仪臂中的微小变化。即使对于强大的信号源,臂长的分数变化也可小至1 x 10-21 m /(m·Hz)。; LISA利用重力参考传感器(GRS)进行无阻力控制,并将实现通过管理特定的加速度噪声来获得所需的灵敏度。浮动在每个GRS中心的每个检验质量的总加速度扰动必须低于3 x 10-15 m /(s2·Hz)。预期由于例如日光照射或整个质量块外壳上的温度梯度而引起的热变化将成为LISA灵敏度要求的重要干扰源。即使很小的温度梯度也会在外壳结构中产生变形,从而导致质量吸引力。在这篇论文中,我专注于开发一种热控制系统,旨在在0.1 mHz至1 Hz的范围内实现10 muK / Hz的温度稳定性。;我们选择玻璃珠热敏电阻作为温度传感器,以对GRS进行反馈温度控制。首先,我们在MATLAB中创建了一个温度传感器设计程序,该程序为给定的应用提供了热敏电阻电桥电路中的最佳电阻值。使用直流激励源时,传感器的光谱稳定性在1 mHz时可低至20 muK / Hz。通过采用交流激励和相敏解调,可以满足LISA热要求。其次,已经开发了具有专门设计的多层热室的无源热隔离系统。对于地面测试,可以通过大量热质量很容易地满足热规范。然而,对于航天器,热质量是有限的,这要求主动补偿,尤其是在低频范围内。为了使我们的测试设备能够模拟飞行中的条件并补偿太阳辐射和其他热干扰源,我们将其设计为类似于航天器的结构。通过无源热隔离将温度要求降低到10 mHz的频率。最后,为了克服被动设计的有限带宽,以将温度变化降低到10 mHz以下,开发了一种模型预测控制(MPC)算法来消除主动干扰温度。该系统在0.1 mHz时衰减低至2 mK / Hz的低频变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号