首页> 外文学位 >MODELING OF CATALYST PELLETS AND CARBON DEACTIVATION OF FISCHER TROPSCH CATALYSTS (NON-ISOTHERMAL).
【24h】

MODELING OF CATALYST PELLETS AND CARBON DEACTIVATION OF FISCHER TROPSCH CATALYSTS (NON-ISOTHERMAL).

机译:FISCHER TROPSCH催化剂的催化剂颗粒建模和碳失活(非等温)。

获取原文
获取原文并翻译 | 示例

摘要

The problem of diffusion and reaction in a nonisothermal finite cylindrical catalyst pellet is modeled in the absence (Dirichlet problem) or presence (Robin problem) of external transport resistances. Prater analysis is used to relate the concentration and temperature profiles inside the catalyst. Green's function method is applied to transform the resulting partial differential equation into a Fredholm integral equation. A modified Green's function method is developed to accelerate the convergence of the partial eigen series. It was shown for both the Dirichlet and Robin problems that, the rate of convergence of the eigen series is enhanced by an order of two.; The resulting integral equations are solved by a Newton-Kantorvich iteration scheme to obtain the concentration profiles inside the catalyst. Effectiveness factors are calculated for various nonlinear reaction rate forms. Parameters considered include the Prater, Arrhenius, Sherwood and Nusselt numbers.; Carbon deactivation of 0.5 wt% Ru/(gamma)-Al(,2)O(,3) catalyst is studied using a Berty reactor-GC set up. The experimental variables were--temperature 473(DEGREES)K-573(DEGREES)K; pressure 2 atm-6 atm; weight hourly space velocity 0.85 hr('-1),16.5 hr('-1); H(,2)/CO feed ratio 3,2 and synthesis time 0.5 hr-5 hr. Carbon deposited in a synthesis run is measured by integrating the methane evolution curve during catalyst reduction at 723(DEGREES)K in H(,2).; Significant amounts of carbon were deposited, increasing to several monolayers during a 5 hr synthesis period. Methanation rate decreased as synthesis continued, while, the selectivity for C(,2)-C(,4) hydrocarbons showed a maximum during the initial stages of deactivation.; The kinetic data could be correlated by assuming both hydrogen assisted CO dissociation and hydrogenation of surface carbon to be rate determining. The turnover numbers for methanation(N(,CH(,4))) and carbon deposition(N(,C/Ru)) are given by N(,CH(,4)) = {lcub}8.94 x 10('9)exp(-22500/RT)P(,CO)P(,H(,2))/(1 + 9.56p(,CO))('2){rcub}exp(-1.2c),s('-1); N(,C/Ru) = {lcub}3.45 x 10('6)exp(-16600/RT)p(,CO)('2)/(1 + 9.56p(,CO)){rcub}exp(-0.76c),s('-1).
机译:在不存在外部传递阻力的情况下(狄利克雷问题)或存在(罗宾问题),对非等温有限圆柱形催化剂颗粒中的扩散和反应问题进行了建模。使用Prater分析来关联催化剂内部的浓度和温度曲线。应用格林函数方法将得到的偏微分方程转换为Fredholm积分方程。提出了改进的格林函数方法,以加速部分特征序列的收敛。对于狄利克雷和罗宾问题,都表明,本征级数的收敛速度提高了两倍。所得的积分方程通过牛顿-坎托维奇迭代方案求解,以获得催化剂内部的浓度分布。计算各种非线性反应速率形式的效率因子。考虑的参数包括Prater,Arrhenius,Sherwood和Nusselt数。使用Berty反应器-GC装置研究了0.5 wt%Ru /γ-Al(,2)O(,3)催化剂的碳失活。实验变量是-温度473(DEGREES)K-573(DEGREES)K;压力2 atm-6 atm;时空重0.85 hr('-1),16.5 hr('-1); H(,2)/ CO进料比为3.2,合成时间为0.5-5小时。合成过程中沉积的碳是通过在H(,2)中的723(DEGREES)K催化剂还原过程中对甲烷释放曲线进行积分来测量的。大量的碳沉积,在5小时的合成期间增加到几个单层。随着合成的继续,甲烷化率降低,而C(,2)-C(,4)烃的选择性在失活的初始阶段显示出最大值。动力学数据可以通过假设氢辅助的CO解离和表面碳的氢化来确定速率来关联。甲烷化(N(,CH(,4)))和碳沉积量(N(,C / Ru))的周转次数由N(,CH(,4))= {lcub} 8.94 x 10('9 )exp(-22500 / RT)P(,CO)P(,H(,2))/(1 + 9.56p(,CO))('2){rcub} exp(-1.2c),s(' -1); N(,C / Ru)= {lcub} 3.45 x 10('6)exp(-16600 / RT)p(,CO)('2)/(1 + 9.56p(,CO)){rcub} exp( -0.76c),s('-1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号