首页> 外文学位 >DEVELOPING TURBULENT FLOW AND HEAT TRANSFER IN A ROTATING RECTANGULAR DUCT.
【24h】

DEVELOPING TURBULENT FLOW AND HEAT TRANSFER IN A ROTATING RECTANGULAR DUCT.

机译:在旋转矩形管道中发展湍流和传热。

获取原文
获取原文并翻译 | 示例

摘要

The effects of rotation on the developing turbulent flow and heat transfer in uniformly heated rectangular duct of 2:1 aspect ratio were investigated theoretically and experimentally with the emphasis on the theoretical part.;Numerical computations were performed first for the non-rotating case, for the square and rectangular geometry. Both turbulence models produced results in general agreement with the experimental correlations.;Numerical results obtained for the rotating case indicate that the rotation increases the heat transfer and pressure drop. There is a minimum value of Grashof number, called here, the critical Grashof number G(,c), below which the rotational effects are insignificant. The critical Grashof number increases with Reynolds number and is larger in the entrance region than for the fully developed flow.;The centripetal buoyancy and Coriolis force, arising in this mode of rotation, rearrange markedly the transverse flow pattern and this in turn affects the axial velocity and temperature distributions in the lateral plane. The maxima in these distributions are shifted radially outward in the direction of the centripetal buoyancy force.;Finite-difference solutions for developing turbulent flow and heat transfer in stationary and axially rotating rectangular ducts were obtained. The computations employed the isotropic k-(epsilon) model and algebraic stress model of turbulence and a marching technique to integrate the governing equations.;The numerical solution predict the stable and unstable regions in the flow. In the case of clockwise rotation, the stable region is predicted near the bottom wall and the unstable region near the top wall of the duct. The stable region increases in size with an increase of Grashof number and axial position. The heat and momentum transfer are reduced in the stable region and enhanced in the unstable region with respect to the stationary case. The heat transfer was found to be reduced and enhanced more than the momentum transfer.;The experiments were carried out in a heated rectangular duct of 2:1 aspect ratio, where the duct is parallel but displaced from the rotor axis. Data on heat transfer are obtained for the values of Reynolds number: 10,000 and 20,000.;The heat transfer results from the theoretical predictions have been compared with the experimental data. The present computations are in qualitative agreement with experimental data, except for the value of critical Grashof number. Both turbulence models tested in this work underpredicted the critical Grashof number. (Abstract shortened with permission of author.)
机译:理论上和实验上都以理论部分为重点,研究了旋转对长宽比为2:1的均匀加热矩形管中发展的湍流和传热的影响。首先,对非旋转情况进行了数值计算,对于正方形和矩形的几何形状。两种湍流模型产生的结果都与实验相关性基本吻合。旋转情况的数值结果表明,旋转增加了传热和压降。有一个最小的格拉斯霍夫数,在这里称为临界格拉斯霍夫数G(,c),低于该值时旋转效果就不明显了。临界Grashof数随雷诺数的增加而增加,并且在入口区域比完全展开的流动大。;在这种旋转模式下产生的向心浮力和科里奥利力会明显地重新排列横向流型,进而影响轴向流。在侧面的速度和温度分布。这些分布的最大值沿向心浮力的方向径向向外移动。获得了在固定和轴向旋转的矩形管道中产生湍流和传热的有限差分解。计算采用湍流的各向同性k-ε模型和代数应力模型,并采用行进技术整合了控制方程。数值解预测了流动的稳定和不稳定区域。在顺时针旋转的情况下,在管道的底壁附近预测到稳定区域,而在管道的顶壁附近预测到不稳定区域。稳定区域的大小随Grashof数和轴向位置的增加而增加。相对于固定壳体,热和动量传递在稳定区域中减小,而在不稳定区域中增强。发现与动量传递相比,传热的减少和增强更大。实验是在长宽比为2:1的加热矩形管道中进行的,该管道是平行的,但与转子轴线偏离。获得了雷诺数分别为10,000和20,000的传热数据;将理论预测的传热结果与实验数据进行了比较。除了临界Grashof数的值外,目前的计算与实验数据在质量上吻合。在这项工作中测试的两个湍流模型都低估了临界Grashof数。 (摘要经作者许可缩短。)

著录项

  • 作者

    SARUNAC, NENAD.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1985
  • 页码 358 p.
  • 总页数 358
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号