首页> 外文学位 >FUNDAMENTAL CHARACTERIZATION OF SOILS FOR THE DEVELOPMENT OF AN EXPRESSION FOR PERMEABILITY FOR APPLICATION IN IN SITU TESTING (PREDICTION, COMPUTER, SIMULATION).
【24h】

FUNDAMENTAL CHARACTERIZATION OF SOILS FOR THE DEVELOPMENT OF AN EXPRESSION FOR PERMEABILITY FOR APPLICATION IN IN SITU TESTING (PREDICTION, COMPUTER, SIMULATION).

机译:开发用于现场测试(预测,计算机,模拟)的渗透性表达式的土壤的基本特征。

获取原文
获取原文并翻译 | 示例

摘要

Soil was assumed as spatially periodic porous media and Navier-Stokes equation was solved using FEM with appropriate boundary conditions for several different arrangements. The basic variables influencing permeability were identified as specific surface areas, void ratio, particle shape, material heterogeneity and arrangement of particles in porous media.; A sensitivity analysis was carried out to obtain an expression for the permeability in terms of the above variables. A fundamental expression of permeability tensor is proposed in terms of void ratio, specific surface area, anisotropy and tortuosity due to material heterogeneity for the most common occurrence of particle arrangement. The functional relationship for specific surface area, and void ratio in the above expression turned out to be the same as that in Kozeny-Carman equation.; Comparison is made between measured vertical permeability of Silica Flour with that predicted using the expression proposed. For fine grained soils in non-polar media or coarse grained soil in any media the above expression could be used to predict permeability provided external specific surface area is known. The variation of hydraulic anisotropy with porosity follow the same exponential variation found in electrical anisotropy suggesting a one-to-one relation between hydraulic and electrical anisotropies.; Physico-chemical interaction of clay-water system could be quantified in terms of cluster concept. Permeability of six clays were predicted using a modified version of the expression proposed. Modification for the proposed expression involves the replacement of total void ratio and porosity by inter (or between the) cluster void ratio and a factor for specific surface area to include the enlarged size of the particle due to the formation of clusters.; For the In situ prediction of permeability all of the variables affecting permeability need to be predicted in situ namely: the cluster void ratio, total void ratio, specific surface area and electrical anisotropy. The methodology for in situ prediction of cluster void ratio, total void ratio and electrical anisotropy already exists. A new method of predicting the specific surface area is proposed using the in situ magnitude of dielectric dispersion. A unique correlation between specific surface area and the magnitude of the dielectric dispersion is proposed including the modification of specific surface area with clay structure.
机译:假定土壤为空间周期性多孔介质,并使用FEM在几种不同布置的适当边界条件下求解Navier-Stokes方程。确定渗透率的基本变量为比表面积,空隙率,颗粒形状,材料不均匀性和多孔介质中颗粒的排列。进行敏感性分析以获得根据上述变量的渗透率的表达式。在孔隙率,比表面积,各向异性和曲折性方面,提出了渗透率张量的基本表达式,这是由于粒子排列最常见的材料异质性引起的。上式中的比表面积和空隙率的函数关系与Kozeny-Carman方程式相同。将测得的二氧化硅粉的垂直渗透率与使用建议的表达式预测的垂直渗透率进行比较。对于非极性介质中的细粒土壤或任何介质中的粗粒土壤,只要已知外部比表面积,上述表达式即可用于预测渗透率。水力各向异性随孔隙度的变化遵循电各向异性中发现的相同指数变化,表明水力各向异性和电各向异性之间是一对一的关系。粘土-水系统的物理化学相互作用可以用聚类概念来量化。使用提议的表达式的修改版本可以预测六种粘土的渗透性。对提出的表达式的修改涉及用簇之间的空隙率(或簇之间的空隙率)和比表面积的因数取代总空隙率和孔隙率,以包括由于形成簇而增大的颗粒尺寸。对于渗透率的原位预测,需要对影响渗透率的所有变量进行原位预测,即:团簇空隙率,总空隙率,比表面积和电各向异性。原位预测团簇空隙率,总空隙率和电各向异性的方法已经存在。提出了一种利用电介质色散的原位预测比表面积的新方法。提出了比表面积与介电色散大小之间的独特关联,包括用粘土结构改性比表面积。

著录项

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 1985
  • 页码 263 p.
  • 总页数 263
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号