首页> 外文学位 >A PRECISE DETERMINATION OF H/M(E) USING A ROTATING, SUPERCONDUCTING RING (PLANCK'S, ELECTRON MASS, FUNDAMENTAL).
【24h】

A PRECISE DETERMINATION OF H/M(E) USING A ROTATING, SUPERCONDUCTING RING (PLANCK'S, ELECTRON MASS, FUNDAMENTAL).

机译:使用旋转的超导环(普朗克,电子质量,基本原理)精确测定H / M(E)。

获取原文
获取原文并翻译 | 示例

摘要

A precise determination of h/m(,e) (Planck's constant divided by the free electron mass) using a rotating, superconducting ring is presented in this thesis. The measurement is based on two macroscopic quantum properties of superconductors: the quantization of the magnetic flux inside a superconducting ring and the London moment, a magnetic moment generated by any rotating superconductor and proportional to the spin speed. When these two magnetic fluxes are balanced against each other (a flux null), h/m(,e) can be found by measuring the spin speed at that point and the area bounded by the ring. The superconducting ring used in these experiments was thin-film niobium (20-(mu)m-wide by 400-nm-thick) deposited by electron-beam evaporation around the equator of a 5-cm-diameter, fused-quartz hemisphere. A novel photolithographic, lift-off technique was used to define its width and location. The cross-sectional areas of this ring was determined to an accuracy of 8 ppm. The hemisphere also acted as the rotor for an all-quartz, cryogenic, helium-gas bearing. Simultaneous measurements of the rotor's spin speed and the quantized magnetic flux inside the ring generated the information necessary to calculate the value of h/m(,e). This work has determined h/m(,e) directly to an accuracy of 100 parts per million (ppm), a higher level of precision than previously reported (400 ppm). Recent theoretical calculations have predicted a relativistic mass increase of 150 ppm for electrons in spinning, superconducting niobium, but the uncertainty in our final results prevented the clear identification of this effect.
机译:本文提出了使用旋转的超导环精确确定h / m(,e)(普朗克常数除以自由电子质量)的方法。该测量基于超导体的两个宏观量子特性:超导环内部的磁通量和伦敦矩的量化,由任何旋转的超导体产生的磁矩并与自旋速度成比例。当这两个磁通量相互平衡时(磁通量为零),可以通过测量该点的自旋速度和环的边界面积来确定h / m(,e)。在这些实验中使用的超导环是通过电子束蒸发在直径5厘米的熔融石英半球的赤道周围沉积的薄膜铌(宽20微米,厚400纳米)。一种新颖的光刻剥离技术被用来定义其宽度和位置。确定该环的横截面精度为8 ppm。半球还充当全石英低温氦气轴承的转子。同时测量转子的自旋速度和环内部的量化磁通,可以得出计算h / m(,e)值所需的信息。这项工作直接将h / m(,e)确定为100百万分之一(ppm)的精度,比以前报道的(400 ppm)更高的精度。最近的理论计算已经预测,相对旋转质量的电子在旋转的​​超导铌中会增加150 ppm,但是我们最终结果的不确定性无法清楚地识别这种效应。

著录项

  • 作者

    FELCH, SUSAN BENJAMIN.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 1985
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号