首页> 外文学位 >Using hyperentanglement for advanced quantum communication.
【24h】

Using hyperentanglement for advanced quantum communication.

机译:使用超纠缠进行高级量子通信。

获取原文
获取原文并翻译 | 示例

摘要

The field of quantum information science promises incredible enhancements in computing, metrology, simulation, and communication, but the challenge of creating, manipulating, and measuring the large quantum states has limited current implementations of such techniques. Such limitations affect photonic quantum information in particular, because photons lack the strong nonlinear interactions required for building up many-particle entangled states and performing multi-photon gates; nevertheless, because photons are currently the only "flying qubit", i.e., qubits that are mobile, they are a required resource for quantum communication protocols. One strategy to partially mitigate this limitation is to encode multiple entangled qubits on the different degrees of freedom of a single pair of photons. Such "hyperentangled" quantum states may be created with enough qubits to enable a whole new class of quantum information experiments. Furthermore, while nonlinear interactions are required to implement multi-qubit gates between qubits encoded on different particles, such gates can be implemented between qubits encoded on the same particle using only linear elements, enabling a much broader class of measurements. We use hyperentangled states to implement various quantum communication and quantum metrology protocols. Specifically, we demonstrate that hyperentangled photons can be used to increase the classical channel capacity of a quantum channel, transport quantum information between two remote parties efficiently and deterministically, and efficiently characterize quantum channels. We will discuss how to produce, manipulate, and measure hyperentangled states and discuss how entanglement in multiple degrees of freedom enables each technique. Finally, we discuss the limitations of each of these techniques and how they might be improved as technology advances.
机译:量子信息科学领域有望在计算,计量,仿真和通信方面实现令人难以置信的增强,但是创建,操纵和测量大量子态的挑战限制了此类技术的当前实现。这些限制特别影响光子量子信息,因为光子缺乏建立多粒子纠缠态和执行多光子门所需的强非线性相互作用。然而,由于光子是当前唯一的“飞行量子位”,即可移动的量子位,因此它们是量子通信协议的必需资源。一种部分减轻这种限制的策略是在单对光子的不同自由度上编码多个纠缠量子比特。可以用足够的量子位来创建这种“超纠缠”量子态,以实现全新的量子信息实验类。此外,虽然需要非线性相互作用来实现在不同粒子上编码的量子位之间的多量子位门,但是这种门可以仅使用线性元素在同一粒子上编码的量子位之间实现,从而实现了更广泛的测量类别。我们使用超纠缠态来实现各种量子通信和量子计量协议。具体而言,我们证明了超纠缠光子可用于增加量子通道的经典通道容量,有效且确定性地在两个远程方之间传输量子信息以及有效地表征量子通道。我们将讨论如何产生,操纵和测量超纠缠态,并讨论在多个自由度中的纠缠如何使每种技术成为可能。最后,我们讨论了每种技术的局限性,以及随着技术的进步如何改进它们。

著录项

  • 作者

    Graham, Trent.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Quantum physics.;Optics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号