首页> 外文学位 >DYNAMIC PROPERTIES OF SAND UNDER TRUE TRIAXIAL STRESS STATES FROM RESONANT/COLUMN TORSIONAL SHEAR TESTS
【24h】

DYNAMIC PROPERTIES OF SAND UNDER TRUE TRIAXIAL STRESS STATES FROM RESONANT/COLUMN TORSIONAL SHEAR TESTS

机译:共振/柱扭剪试验在真三轴应力状态下砂土的动力特性

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this research is to study the effect of three-dimensional stress states on dynamic properties of dry sand. A uniform washed mortar sand was selected for study. The dynamic properties of concern were the shear modulus and material damping ratio at shearing strains between about 0.0001 and 0.1%. To perform this study, an operational resonant column/torsional shear (RCTS) apparatus, with which biaxial loading $(sigmasb{1}spprime > sigmasb{2}spprime$ = $sigmasb{3}spprime)$ could be applied, was modified so that hollow cylindrical specimens could be tested with internal cell pressures set independently from external cell pressures. With the modified apparatus, sand specimens were then subjected to various true triaxial states of stress ($sigmasb{1}spprime > sigmasb{2}spprime > sigmasb{3}spprime$) prior to dynamic testing. In addition, computer-aided excitation, monitoring, and data analysis systems were developed to facilitate experimental testing.;The dynamic shear modulus of this sand under isotropic loading agreed closely with the results of previous researchers. However, under biaxial and true triaxial loadings, the low-amplitude shear modulus was found to depend about equally upon the principal stresses in the direction of wave propagation and particle motion and to be relatively independent of the stress in the out-of-plane direction. A modified Hardin (1978) equation was developed to predict the shear modulus under anisotropic loads. Furthermore, the modified equation was also used to predict high-amplitude shear moduli under anisotropic loads. The study shows that by combining this equation with the Ramberg-Osgood equation, high-amplitude shear moduli under anisotropic loads can be well predicted.;Low-amplitude material damping under isotropic loading decreased with increasing mean effective principal stress in a fashion similar to that predicted by previous researchers. However, low-amplitude damping ratio under anisotropic loads depends on both the applied stress state and stress ratio. Material damping at high amplitude strains depends not only on stress state and shearing strain but also on the measurement method used. This study shows that high-amplitude damping ratios determined from resonant column tests exhibit the lowest values, while damping ratios obtained from the half-power bandwidth method exhibit the highest values. In addition, high-amplitude damping ratios predicted from shear moduli measured by the resonant column test combined a Ramberg-Osgood model and Masing criteria agreed well with those determined from torsional shear tests.
机译:本研究的目的是研究三维应力状态对干砂动力特性的影响。选择均匀的砂浆砂进行研究。所关注的动力学性质是在约0.0001至0.1%之间的剪切应变下的剪切模量和材料阻尼比。为了进行这项研究,修改了一种可操作的共振柱/扭转剪力(RCTS)装置,该装置可应用双轴载荷$(sigmasb {1} spprime> sigmasb {2} spprime $ = $ sigmasb {3} spprime)$因此,空心圆柱样品可以用独立于外部单元压力设置的内部单元压力进行测试。使用改进的设备,然后在进行动态测试之前,使砂试样经受各种真实的三轴应力状态($ sigmasb {1} spprime> sigmasb {2} spprime> sigmasb {3} spprime $)。此外,还开发了计算机辅助的激励,监测和数据分析系统,以方便进行实验测试。在各向同性载荷下,这种砂的动态剪切模量与以前的研究人员的研究结果非常吻合。然而,在双轴和真正的三轴载荷下,发现低振幅剪切模量大致相同地取决于波传播方向和粒子运动方向上的主应力,并且相对独立于面外方向上的应力。提出了改进的Hardin(1978)方程来预测各向异性载荷下的剪切模量。此外,该修正方程还用于预测各向异性载荷下的高振幅剪切模量。研究表明,通过将该方程与Ramberg-Osgood方程相结合,可以很好地预测各向异性载荷下的高振幅剪切模量;各向同性载荷下的低振幅材料阻尼随着平均有效主应力的增加而减小,其减小方式类似于由先前的研究人员预测。但是,各向异性载荷下的低振幅阻尼比取决于所施加的应力状态和应力比。高振幅应变下的材料阻尼不仅取决于应力状态和剪切应变,还取决于所使用的测量方法。这项研究表明,通过共振柱测试确定的高振幅阻尼比显示出最低的值,而通过半功率带宽方法获得的阻尼比显示出最高的值。此外,由共振柱试验测量的剪切模量预测的高振幅阻尼比结合了Ramberg-Osgood模型和Masing标准,与扭转剪切试验确定的相吻合。

著录项

  • 作者

    NI, SHENG-HUOO.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Civil engineering.
  • 学位 Ph.D.
  • 年度 1987
  • 页码 447 p.
  • 总页数 447
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:50:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号