首页> 外文学位 >CONTROL OF COMBUSTION AND ACOUSTICALLY COUPLED FLUID DYNAMIC INSTABILITIES.
【24h】

CONTROL OF COMBUSTION AND ACOUSTICALLY COUPLED FLUID DYNAMIC INSTABILITIES.

机译:燃烧和声耦合流体动力失稳的控制。

获取原文
获取原文并翻译 | 示例

摘要

The purpose of the present research is to demonstrate experimentally a set of methods for the active control of combustion and acoustically coupled fluid dynamic instabilities. These methods are based on the theoretical understanding of the interaction of mass, momentum or energy sources with a disturbance in the system. The disturbance could be nonlinear and either vortical, acoustic or in the entropy mode. It has been shown that periodic addition of mass, momentum or energy can result in either the amplification or the decay of the energy in a periodic disturbance depending on the phase in which this addition occurs. Successful control has been achieved in several cases of fluid dynamic and combustion instability ranging from laboratory scale experiments to an operational, large combustion tunnel.;The method of heat addition was used to successfully control oscillations in a Rijke tube, a whistler nozzle, resonance in a pipe set up by a loudspeaker, and a turbulent pipe flow with superimposed acoustic resonance. It was found that more control heat is necessary to suppress oscillations with a large background turbulent noise. Drag forces generated by fine screens was used to suppress the oscillations in a whistler nozzle. A feedback mechanism was designed to oscillate the screens in the proper phase to achieve the desired control action. The resonance in a pipe set up by a loudspeaker was suppressed by periodic mass addition using a feedback control system. Finally, a combination of screens and heating coils was used to control oscillations in a large combustion tunnel. The methods of control explored in this work are independent of the source of instability, and hence have a broad range of applications in real systems.
机译:本研究的目的是通过实验证明一套主动控制燃烧和声耦合流体动力不稳定性的方法。这些方法基于对质量,动量或能量源与系统扰动的相互作用的理论理解。扰动可以是非线性的,也可以是涡旋的,声波的或处于熵模式。已经显示出,质量,动量或能量的周期性相加可以导致能量以周期性扰动放大或衰减,这取决于这种相加发生的相位。从实验室规模的实验到运行中的大型燃烧通道,在流体动力学和燃烧不稳定性的几种情况下均已成功地进行了控制。热添加方法用于成功控制Rijke管中的振动,吹口哨,振子共振。由扩音器设置的管道,以及湍流,叠加了声共振。已经发现,需要更多的控制热量来抑制具有大背景湍流噪声的振荡。由细筛产生的阻力被用来抑制吹口哨中的振动。设计了一种反馈机制,以使屏幕以适当的相位振动,以实现所需的控制动作。通过使用反馈控制系统定期添加质量,可以抑制扬声器设置的管道中的共振。最后,将屏幕和加热盘管组合使用来控制大型燃烧隧道中的振荡。这项工作中探讨的控制方法与不稳定的来源无关,因此在实际系统中具有广泛的应用。

著录项

  • 作者

    RAGHU, SURYA.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1987
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号