首页> 外文学位 >AXIAL LASER DISCHARGE STABILIZATION WITH ROTATING MAGNETIC FIELDS.
【24h】

AXIAL LASER DISCHARGE STABILIZATION WITH ROTATING MAGNETIC FIELDS.

机译:具有旋转磁场的轴向激光放电稳定。

获取原文
获取原文并翻译 | 示例

摘要

Efforts to increase the discharge specific power loading in high power carbon dioxide lasers have been hampered by the onset of electrothermal instabilities. Previous research, performed at the University of Alberta's Laser Laboratory, showed that a stabilization technique, using static magnetic fields, was effective in suppressing these instabilites, in both transverse and coaxial geometries, through the generation of sheared mixing velocities in the bulk gas and magnetic stabilization of the charged sheath regions.;A theoretical analysis showed that the stabilization mechanism in this axial discharge geometry was not a result of the generation of mixing velocities in the bulk gas, as was the case for the transverse and coaxial geometries. In fact, high speed photography revealed that the plasma column was deflected away from the centerline position when the transverse rotating magnetic field was applied. Further theoretical analysis showed that this deflection was the result of a Lorentz force acting on the plasma column. Consequently, as the magnetic field rotated, the plasma column swept around the discharge cross-section. As the magnetic field strength was increased, the Lorentz force grew, thereby deflecting the plasma still closer to the chamber wall.;Experimental studies were performed with the discharge test section, now 50 cm in length, mounted into a recirculating gas loop. Diagnostics, done with a 20 Torr laser gas mixture, included: terminal characteristics, temperature measurements, electron density assessments and gain studies. Laser power output is discussed briefly. The results indicated that a transverse rotating magnetic field can indeed improve gas discharge stability in an axial discharge geometry. A 25% increase in discharge power loading was demonstrated, using this discharge stabilization technique.;The purpose of this investigation was to adapt this magnetic stabilization technique to an axial discharge, with the use of a transverse rotating magnetic field. Preliminary work, done with a sealed cylindrical discharge chamber, 10 cm in diameter and 25 cm in length, showed that electrothermal instabilities were indeed preventable in such an axial discharge, through a judicious choice of magnetic field profile and strength.
机译:电热不稳定性的出现阻碍了提高高功率二氧化碳激光器中放电比功率负载的努力。先前在阿尔伯塔大学激光实验室进行的研究表明,使用静磁场的稳定化技术可通过在大体积气体和磁场中产生剪切混合速度来有效地抑制横向和同轴几何形状中的这些不稳定性。理论分析表明,这种轴向放电几何形状的稳定机制不是在散装气体中产生混合速度的结果,横向和同轴几何形状都是这种情况。实际上,高速摄影显示,当施加横向旋转磁场时,等离子柱偏离中心线位置。进一步的理论分析表明,这种偏转是洛伦兹力作用在等离子柱上的结果。因此,随着磁场的旋转,等离子柱扫过放电截面。随着磁场强度的增加,洛伦兹力增加,从而使等离子体偏转得更接近腔室壁。实验研究是将放电测试部分(现在长50厘米)安装在循环气体回路中。使用20 Torr激光气体混合物进行的诊断包括:终端特性,温度测量,电子密度评估和增益研究。简要讨论了激光功率输出。结果表明,横向旋转磁场确实可以改善轴向排放几何形状中的气体排放稳定性。使用这种放电稳定技术,证明了放电功率负载增加了25%。该研究的目的是通过横向旋转磁场使这种磁稳定技术适应轴向放电。使用直径为10 cm,长度为25 cm的密封圆柱形放电室进行的初步工作表明,通过明智地选择磁场分布和强度,在这种轴向放电中确实可以防止电热不稳定性。

著录项

  • 作者

    WILLIS, RONALD JOHN.;

  • 作者单位

    University of Alberta (Canada).;

  • 授予单位 University of Alberta (Canada).;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 1987
  • 页码 1 p.
  • 总页数 1
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 老年病学;
  • 关键词

  • 入库时间 2022-08-17 11:50:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号