首页> 外文学位 >Simulating the inelastic seismic behavior of steel braced frames including the effects of low-cycle fatigue.
【24h】

Simulating the inelastic seismic behavior of steel braced frames including the effects of low-cycle fatigue.

机译:模拟钢支撑框架的非弹性地震行为,包括低周疲劳的影响。

获取原文
获取原文并翻译 | 示例

摘要

The research in this dissertation describes simulations of the inelastic seismic behavior of steel braced frames including the effects of low-cycle fatigue. Various types of nonlinear behavior are considered: material inelasticity, low-cycle fatigue, and local and global geometric nonlinearities. The effects of suddenly started, quasi-brittle fracture are not considered herein. For steel braced frames, braces, columns, beams, and connections subjected to significant axial loads and deformations, as well as bending moments and shear. Under these complex-loading conditions, a wide variety of behavior mechanisms and failure modes may occur for each type of member and connection. Thus, numerical models that assess the initiation and propagation of failure during cyclic loading need to account for multi-axial states of material nonlinearity, local and global buckling, and the exhaustion of the ability of the material to deform inelastically caused by low-cycle fatigue.;Following a review of existing material models for simulating structural steel deterioration, a series of investigations are conducted using finite element modeling techniques. Finite element methods can directly account for complex states of stress and changes in deformed shape. And material models are critical for constitutive behavior at integration points of the finite element models. However, available material models tend to emphasize behavior associated with ideal ductile response or with failure occurring under monotonic loading conditions (e.g., during metal-forming processes or vehicle collision). These models are not suitable for progressive collapse analysis under cyclic loading where the consequence of this adverse behavior on the subsequent response or integrity of the structure is of interest.;Therefore, a new, numerically efficient continuum damage mechanics material model capable of simulating inelastic behavior and deterioration of mechanical properties because of low-cycle fatigue has been devised and implemented in a finite element software LS-DYNA (LSTC 2007). Computational results obtained with this new material model correlate well with test results for several beam-to-column connections, individual braces, and braced frame subassemblies. These applications of the finite element model to realistic cases involving progressive collapse illustrate the importance of material deterioration and rupture. Unfortunately, the ability of the material model to predict ultimate behavior depends heavily on the material modeling properties specified. Recommendations for characterizing material properties for these types of analysis are developed and presented.;A series of analyses are presented that evaluate and refine several requirements for detailing and analyzing special concentrically braced steel frame buildings, demonstrating that the fatigue life capacity of braces is heavily dependent on width-thickness ratios and deformation histories. Member slenderness ratios are shown to have negligible effect on fatigue life capacity. Therefore, recommendations are presented for developing fatigue life demand or loading protocols for use in numerical and experimental investigations. Next, damage evolution in gusseted beam-to-column connections is evaluated and compared for different connection details, and improved connection details are recommended to reduce the damage accumulation. The position of lateral bracing members for beams in V-type and inverted V-type braced frames are also examined. More appropriate positions and methods to compensate for problems detected for currently recommended lateral bracing member positions are suggested and evaluated. Finally, for low-rise braced frames that respond inelastically during strong earthquake ground shaking, an alterative method to estimate interstory drift demands is suggested based on the Modal Pushover Analysis procedure.
机译:本文的研究描述了钢支撑框架的非弹性地震行为的模拟,包括低周疲劳的影响。考虑了各种类型的非线性行为:材料非弹性,低周疲劳以及局部和全局几何非线性。本文不考虑突然开始的准脆性断裂的影响。对于钢制支撑框架,支撑,柱,梁和连接件会承受明显的轴向载荷和变形,以及弯矩和剪切力。在这些复杂的负载条件下,对于每种类型的成员和连接,可能会出现各种各样的行为机制和故障模式。因此,评估循环载荷过程中破坏的发生和传播的数值模型需要考虑材料非线性,局部和整体屈曲的多轴状态,以及由低循环疲劳引起的材料非弹性变形能力的耗尽。 。;在回顾了用于模拟结构钢劣化的现有材料模型之后,使用有限元建模技术进行了一系列研究。有限元方法可以直接考虑应力的复杂状态和变形形状的变化。材料模型对于有限元模型积分点的本构行为至关重要。但是,可用的材料模型倾向于强调与理想的延性响应或与在单调加载条件下(例如,在金属成型过程或车辆碰撞期间)发生的破坏相关的行为。这些模型不适用于循环荷载下的渐进倒塌分析,在这种情况下,这种不良行为对结构的后续响应或完整性造成的影响是令人关注的;因此,一种能够模拟非弹性行为的新型数值有效的连续损伤力学材料模型由于低周疲劳而导致的机械性能下降和机械性能下降已在有限元软件LS-DYNA(LSTC 2007)中设计和实现。通过这种新的材料模型获得的计算结果与几个梁到柱连接,单个支撑和支撑框架子组件的测试结果紧密相关。有限元模型在涉及渐进塌陷的实际情况中的这些应用说明了材料劣化和破裂的重要性。不幸的是,材料模型预测最终行为的能力在很大程度上取决于指定的材料建模属性。提出并提出了用于表征这些类型分析的材料特性的建议。提出了一系列分析,这些分析评估和完善了详细描述和分析特殊同心支撑钢框架建筑的若干要求,表明支撑的疲劳寿命能力在很大程度上取决于宽厚比和变形历史。成员细长比显示出对疲劳寿命的影响可以忽略不计。因此,提出了用于开发疲劳寿命需求或数值和实验研究中使用的加载协议的建议。接下来,评估了角撑板梁柱连接中的损伤演化,并针对不同的连接细节进行了比较,并建议改进连接细节以减少损伤累积。还检查了V型和倒V型支撑框架中横梁的侧向支撑构件的位置。建议并评估了更合适的位置和方法,以补偿当前推荐的侧向支撑部件位置所检测到的问题。最后,对于在地震强烈地面震动过程中无弹性响应的低层支撑框架,提出了一种基于模态推覆分析程序来估算层间漂移需求的替代方法。

著录项

  • 作者

    Huang, Yuli.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 233 p.
  • 总页数 233
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号