首页> 外文学位 >The rheology of human blood: A structured fluid approach based on rouleau behavior.
【24h】

The rheology of human blood: A structured fluid approach based on rouleau behavior.

机译:人血流变学:一种基于肉串行为的结构化流体方法。

获取原文
获取原文并翻译 | 示例

摘要

The non-Newtonian, viscoelastic behavior of human blood was analyzed by studying the dynamic response of red-blood-cell aggregates (rouleaux) to mechanical stress. A new microcapillary device directly recorded the dynamic response of rouleaux to applied stresses. A rouleau was aspirated and pinioned by a 2 micron ID capillary. The pinioned rouleau was put under tension by hydrodynamic drag from an external flow field and its dynamic response was visualized through the optical microscope. Drag force calibration experiments gave a relationship between the applied drag force and other system variables. Rouleaux behaved as elastic springs when tension was applied but ruptured when subjected to excessive tension. The measured linear spring-constant for a rouleau from normal blood was approximately 5 ;The model's predicted semi-logarithmic dependence of stress versus time was followed very closely in low-shear-rate stress growth experiments. This technique appears to be superior to the semi-quantitative erythrocyte sedimentation rate test for assessing aggregation tendencies between red cells. Experiments which enhanced the rouleau adhesive strength (addition of 250,000 molecular weight Dextran to the plasma) suggest that the new microcapillary technique shows promise as a diagnostic test for pathologies exhibiting abnormal rouleau adhesive strengths such as diabetes mellitus, multiple myeloma, and Waldestrom's Macroglobulinemia.;A linear model attributed the viscoelastic behavior of blood to the linear-spring response of rouleaux and attributed the non-Newtonian behavior of blood to the changing size distribution of the rouleaux as they ruptured or aggregated in response to prevailing flow conditions. Independent measurements of aggregation kinetics (from light scattering) and of relaxation times (from rheometry) confirmed the predicted reciprocal relationship between the aggregation rate constant and zero-shear-rate limiting relaxation time. Measured spring constants (using the microcapillary technique) and spring constants computed from the predicted dependence of the zero-shear-rate limiting viscosity on measurable rouleau physical properties agreed within the limits of accuracy of the measurement of these properties.
机译:通过研究红细胞聚集体(rouleaux)对机械应力的动态响应,分析了人类血液的非牛顿粘弹性行为。一种新的微毛细管装置直接记录了rouleaux对施加应力的动态响应。抽出肉卷,并用2微米ID的毛细管小齿轮。从外部流场通过流体动力拖拽使小齿轮的小齿轮受到张力,并通过光学显微镜观察其动态响应。阻力校准实验给出了施加的阻力与其他系统变量之间的关系。施加张力时,Rouleaux表现为弹性弹簧,但在过度拉伸时会破裂。从正常血液中测得的肉串的线性弹簧常数约为5;在低剪切速率应力增长实验中,非常严格地遵循了模型预测的应力对时间的半对数依赖性。该技术似乎优于半定量红细胞沉降速率测试,用于评估红细​​胞之间的聚集趋势。增强rouleau粘合强度(向血浆中添加250,000分子量的右旋糖酐)的实验表明,这种新的微毛细管技术有望作为诊断测试,用于表现出异常rouleau粘合强度的病理学,例如糖尿病,多发性骨髓瘤和Waldestrom巨球蛋白血症。线性模型将血液的粘弹性行为归因于rouleaux的线性弹簧响应,并将血液的非牛顿行为归因于rouleaux响应于主要流动条件而破裂或聚集时尺寸分布的变化。对聚集动力学(来自光散射)和弛豫时间(来自流变学)的独立测量证实了聚集速率常数与零剪切速率极限弛豫时间之间的预测倒数关系。测得的弹簧常数(使用微毛细管技术)和根据零剪切速率极限粘度对可测量的劳氏物理性能的预测依赖性所计算出的弹簧常数在这些性能的测量精度范围内一致。

著录项

  • 作者

    Rosenblatt, Joel Solomon.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Biomedical.;Biophysics Medical.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 1988
  • 页码 398 p.
  • 总页数 398
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:50:51

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号