首页> 外文学位 >Systematics and evolution of the Carex pachystachya complex (Cyperaceae).
【24h】

Systematics and evolution of the Carex pachystachya complex (Cyperaceae).

机译:Carex pachystachya复合体(莎草科)的系统学和进化。

获取原文
获取原文并翻译 | 示例

摘要

Multivariate statistical analyses of 26 morphological characters indicates the ten previously recognized species in the complex represent seven taxonomic species and two subspecies. One subspecies, C. pachystachya ssp.compacta, is newly recognized. Although breaks in the continuum of the quantitative characters are evident, there still exists significant overlap in many of the characters. Cytological studies on the four chromosomal races (n = 37, 38,39, 41) of C. pachystachya show the n = 41 race comprises the ssp. compacta which occurs in high montane to subalpine regions. The remaining races show no correlation with morphology but do occur in lower elevations. Multiple counts in populations show chromosome number does not vary in populations nor between parents and progeny. Thus populations are fixed for a particular chromosome number. Crossing studies among the chromosome races of C. pachystachya show the plants are self-compatible and prefer inbreeding to outcrossing. All races are cross-compatible, but fertility in the F1 are significantly reduced. Meiotic analysis of F1 progeny shows this results from numerous chromosomal structural rearrangements. The fewest chromosomal differences occur among the n = 37, 38 and 39 races while the n = 41 race shares as many translocation differences with the other races as do related species. This conclusively demonstrates chromosomal repatterning has taken place during the evolution of a perennial plant group. Enzyme electrophoresis within and among 67 populations of the complex results in high average genetic identities both among populations within a species and between populations of different species ({dollar}>{dollar}0.9). Identity values range from a low of 0.6 to a high of 1.0. These ranges result mainly from populations being fixed for different alleles and concur with the crossing studies that populations are inbreed in nature. In total, the data suggest a recent origin of the group. Evolution must have been rapid to allow the morphological variation to have accumulated for the recognition of seven species. Finally, a mechanism for the rapid evolution has been shown by seeing how chromosome number change, combined with chromosomal structural rearrangements and inbreeding allows reproductive isolation to develop rapidly. Isolated populations become fixed for different isozyme alleles, and probably other alleles, resulting in rapid genetic divergence.
机译:对26个形态特征的多变量统计分析表明,该复合物中的10个先前公认的物种代表7个分类物种和2个亚种。一种新近认识到的亚种是C. pachystachya ssp.compacta。尽管数量特征连续体的断裂是明显的,但许多特征仍然存在明显的重叠。对C. pachystachya的四个染色体小种(n = 37、38、39、41)的细胞学研究表明,n = 41个小种组成了ssp。在山区到亚高山地区的致密粉。其余种族与形态没有相关性,但确实发生在较低海拔。种群中的多重计数表明种群中以及父母与后代之间的染色体数目没有变化。因此,对于特定的染色体数,种群是固定的。 C. pachystachya染色体种族之间的杂交研究表明,这些植物具有自我相容性,并且比近交更喜欢近交。所有种族都是交叉兼容的,但F1的生育能力大大降低。 F1后代的减数分裂分析表明,这种结果来自众多的染色体结构重排。在n = 37、38和39个小种之间,染色体差异最少,而在n = 41个小种之间,与其他小种相比,其相关物种的易位差异也一样多。这最终证明了在多年生植物群进化过程中发生了染色体重排。复合体的67个种群内部和之中的酶电泳可在一个物种内的种群之间以及不同物种的种群之间产生较高的平均遗传同一性({dollar}> {dollar} 0.9)。标识值的范围从0.6的低到1.0的高。这些范围主要是由于针对不同等位基因固定了种群,并同意种群是自然近交的杂交研究。总体而言,数据表明该组是最近起源的。进化必须迅速,以允许形态变异积累起来,以便识别七个物种。最后,通过观察染色体数目如何变化,结合染色体结构重排和近交使生殖分离迅速发展,已显示出快速进化的机制。对于不同的同工酶等位基因,可能还有其他等位基因,分离的种群变得固定,从而导致快速的基因差异。

著录项

  • 作者

    Whitkus, Richard.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Biology Botany.
  • 学位 Ph.D.
  • 年度 1988
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 植物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号