首页> 外文学位 >Synthesis and chemical modification of carbon nanostructures for materials applications.
【24h】

Synthesis and chemical modification of carbon nanostructures for materials applications.

机译:用于材料应用的碳纳米结构的合成和化学改性。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation explores the structure, chemical reactivities, electromagnetic response, and materials properties of various carbon nanostructures, including single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphite, and graphene nanoribbons (GNRs). Efficient production and modification of these unique structures, each with their own distinct properties, will make them more accessible for applications in electronics, materials, and biology.;A method is reported for controlling the permittivity from 1--1000 MHz of SWCNT-polymer composites (0.5 wt%) for radio frequency applications including passive RF antenna structures and EMI shielding. The magnitude of the real permittivity varied between 20 and 3.3, decreasing as higher fractions of functionalized-SWCNTs were added.;The microwave absorbing properties and subsequent heating of carbon nanotubes were used to rapidly cure ceramic composites. With less than 1 wt% carbon nanotube additives and 30--40 W of directed microwave power (2.45 GHz), bulk composite samples reached temperatures above 500 °C within 1 min.;Graphite oxide (GO) polymer nanocomposites were developed at 1, 5, and 10 wt% for the purpose of evaluating the flammability reduction and materials properties of the resulting systems. Microscale oxygen consumption calorimetry revealed that addition of GO reduced the total heat release in all systems, and GO-polycarbonate composites demonstrated very fast self-extinguishing times in vertical open flame tests.;A simple solution-based oxidative process using potassium permanganate in sulfuric acid was developed for producing nearly 100% yield of graphene nanoribbons (GNRs) by lengthwise cutting and unraveling of MWCNT sidewalls. Subsequent chemical reduction of the GNRs resulted in restoration of electrical conductivity. The GNR synthetic conditions were investigated in further depth, and an improved method which utilized a two-acid reaction medium was found to produce GNRs with fewer defects and/or holes on the basal plane and higher aspect ratio.;Two different covalent functionalization methods for GNRs based on diazonium chemistry were developed. The resulting functionalized GNRs (f-GNRs) are readily soluble in organic solvents which increase their solution processability. The f-GNRs were also found to be in a reduced state, with minimal sp2 carbon disruption, while also keeping the ribbon shape.
机译:本文探讨了单壁碳纳米管(SWCNTs),多壁碳纳米管(MWCNTs),石墨和石墨烯纳米带(GNR)等各种碳纳米结构的结构,化学反应性,电磁响应和材料性能。这些独特结构的有效生产和修饰,每个都有其独特的特性,将使其更易于在电子,材料和生物学中应用。;据报道,有一种方法可控制SWCNT聚合物在1-1000 MHz范围内的介电常数用于射频应用的复合材料(0.5 wt%),包括无源RF天线结构和EMI屏蔽。实际介电常数的大小在20到3.3之间变化,随着功能化SWCNT的添加比例增加而降低。;微波吸收特性和随后的碳纳米管加热被用来快速固化陶瓷复合材料。在不到1 wt%的碳纳米管添加剂和30--40 W的定向微波功率(2.45 GHz)的作用下,大块复合材料样品在1分钟内达到了500°C以上的温度;在1,下开发了石墨氧化物(GO)聚合物纳米复合材料为了评估所得体系的可燃性降低和材料性能,其含量为5wt%和10wt%。微量耗氧量热法显示,添加GO降低了所有系统的总热量释放,并且GO-聚碳酸酯复合材料在垂直明火测试中显示出非常快的自熄时间;使用高锰酸钾在硫酸中进行的基于溶液的简单氧化过程通过纵向切割和解散MWCNT侧壁,开发出用于生产近100%产率的石墨烯纳米带(GNR)的石墨烯纳米带。随后的GNR的化学还原导致电导率恢复。进一步研究了GNR的合成条件,发现一种改进的利用二酸反应介质的方法,可以生产出基面上缺陷和/或孔少,长径比较高的GNR。两种不同的共价官能化方法开发了基于重氮化学的GNR。所得的官能化GNR(f-GNR)易溶于有机溶剂,从而增加了溶液的可加工性。还发现f-GNR处于还原状态,sp2碳破坏最小,同时还保持了带状。

著录项

  • 作者

    Higginbotham, Amanda Lynn.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号