首页> 外文学位 >An empirical nonlinear stress-dependent constitutive relationship for rock masses based on rock mass classification.
【24h】

An empirical nonlinear stress-dependent constitutive relationship for rock masses based on rock mass classification.

机译:基于岩体分类的经验岩体非线性应力依赖本构关系。

获取原文
获取原文并翻译 | 示例

摘要

The design of support systems in most underground excavations in the United States makes use of rock mass classification systems. However, classification systems do not provide a means for quantitatively assessing the performance of supports. As a result excessive supports have often been recommended. The advent of the computer age has made possible tremendous advances in numerical modeling techniques, thus providing a means, at least theoretically, of assessing support performance. However, numerical models are not considered to be reliable design tools because of the geotechnical engineer's inability to provide realistic input parameters to necessary constitutive relationships attempting to model stress-strain response.;Recognizing that rock masses of similar condition behave in a similar manner, an empirical constitutive relationship was developed linking the finite element numerical modeling method with an empirical rock mass classification system, in particular, the Geomechanics System. The constitutive relationship defines the modulus of deformation as the ratio of the deviator stress at failure to the major principal strain at failure. The Hoek and Brown failure criterion is used to predict the deviator stress at failure. Research was directed toward developing a failure criterion defining the major principal strain at failure. The constitutive relationship was developed, in part, through correlations with observed deformation from case history studies and predicted deformations from finite element analysis.;The empirical constitutive relationship developed from this research effort expresses the deformation modulus as a nonlinear function dependent upon the uniaxial compressive strength and strain at failure, the minor principal stress, and rock mass condition as determined by the Geomechanics Classification System. The constitutive relationship, when incorporated into a suitable finite element code, offers an equivalent continuum approach for quantitatively assessing the performance of rock support systems in underground excavations.
机译:在美国大多数地下挖掘中,支撑系统的设计都使用了岩体分类系统。但是,分类系统无法提供定量评估支撑件性能的方法。结果,经常建议使用过多的支撑。计算机时代的到来使得数值建模技术取得了巨大的进步,从而至少在理论上提供了一种评估支持性能的手段。但是,由于岩土工程师无法为必要的本构关系提供逼真的输入参数,试图对应力-应变响应进行建模,因此数值模型不被认为是可靠的设计工具。认识到相似条件的岩体的行为类似,通过将有限元数值模拟方法与经验岩体分类系统(特别是地质力学系统)联系起来,建立了经验本构关系。本构关系将变形模量定义为破坏时的偏应力与破坏时的主要主应变之比。 Hoek和Brown破坏准则用于预测破坏时的偏应力。研究方向是制定定义失效时主要主要应变的失效准则。通过与案例历史研究中观察到的变形和有限元分析中的预测变形的相关性来部分地建立本构关系;根据本研究成果开发的经验本构关系将变形模量表示为依赖于单轴抗压强度的非线性函数由地质力学分类系统确定的破坏应变,次要主应力和岩体状况。当本构关系合并到适当的有限元代码中时,它提供了一种等效的连续方法,用于定量评估地下基坑中的岩石支护系统的性能。

著录项

  • 作者

    Nicholson, Glenn Austin.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Mining engineering.;Geotechnology.
  • 学位 Ph.D.
  • 年度 1989
  • 页码 344 p.
  • 总页数 344
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:50:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号