首页> 外文学位 >A geometrically exact shell theory
【24h】

A geometrically exact shell theory

机译:几何精确的壳理论

获取原文
获取原文并翻译 | 示例

摘要

This work provides the mathematical foundation for and the mechanical analysis of a fully nonlinear, geometrically exact shell theory. This formulation of the shell equations has the advantage that, although the exact nonlinear geometric structure of the idealized two-dimensional body is maintained, complex differential geometry concepts such as covariant derivatives, Riemannian connections or Christoffel symbols are avoided. Furthermore, a weak or variational statement of the local balance equations is developed that is ideally suited for numerical solution techniques.;The analysis begins with a derivation of the integrated or resultant momentum balance equations governing the deformation of a three-dimensional body. These resultant equations comprise an infinite set of balance equations and correspond to the resultant balance of linear momentum plus the successive moments of linear momentum about the resultant shell mid-surface. In addition, an infinite set of integrated balance of angular momentum equations result.;Next, the single director shell kinematic assumption is introduced. The single director shell assumption is the defining feature of the subsequent analysis. With this assumption, the complete kinematic description of the shell and the complete (finite) set of shell momentum balance equations are determined.;For elastic material response, the shell resultant stored-energy function is derived and then defined in terms of the three-dimensional stored-energy function. The shell stress and stress couple resultants are given by hyper-elastic constitutive equations. Theoretically, this three-dimensional definition can be used to obtain shell resultant constitutive equations for any three-dimensional material model. The particular case of a compressible Mooney-Rivlin type material model is considered. From this model, the linear isotropic, neo-Hookean and incompressible Mooney-Rivlin models are obtained as particular cases.;A variational formulation of the shell equations is then developed. The weak form of the momentum balance equations is particularly important for the numerical implementation of the shell equations. Furthermore, the consistent tangent operator for the momentum balance equations is derived. The tangent operator is a vital component of the nonlinear iterative solution procedure and is required for such topics as bifurcation analysis.;The last two chapters investigate linear shell theory and extended kinematical models for finite elasticity and nonlinear shells. A development of the linear theory allows for quantitative comparison between this work and classical shell theories. The extended kinematical models introduce point-wise rotations as independent variables. For shells, a drill rotation formulation of the geometrically exact shell model results.
机译:这项工作为完全非线性,几何精确的壳理论提供了数学基础和力学分析。壳方程的这种表述的优点是,尽管保持了理想化二维物体的精确非线性几何结构,但避免了复杂的微分几何概念,例如协变导数,黎曼连接或Christoffel符号。此外,还开发了一种局部平衡方程的弱或变分形式,非常适合于数值解技术。该分析从推导控制三维物体变形的积分动量平衡方程或合成动量平衡方程开始。这些合成方程包括一组无限的平衡方程,它们对应于线性动量的最终平衡加上围绕最终壳中表面的线性动量的连续矩。此外,得到了角动量方程组的无穷积分平衡。接下来,介绍了单指向矢壳运动学假设。单一导向器壳假设是后续分析的定义特征。以此假设为基础,确定了壳体的完整运动学描述和完整的(有限的)壳体动量平衡方程组。对于弹性材料响应,导出了壳体合成的储能函数,然后根据以下三个方面进行定义:维存储能量函数。壳体应力和应力偶合结果由超弹性本构方程给出。从理论上讲,此三维定义可用于获取任何三维材料模型的壳合成本构方程。考虑了可压缩的Mooney-Rivlin型材料模型的特殊情况。从这个模型中,得到了线性各向同性的,新霍克式的和不可压缩的穆尼-里夫林模型。动量平衡方程的弱形式对于壳方程的数值实现特别重要。此外,导出了动量平衡方程的一致切线算子。切线算子是非线性迭代求解过程的重要组成部分,对于分叉分析等主题是必不可少的。最后两章研究了线性壳理论和有限弹性和非线性壳的扩展运动学模型。线性理论的发展允许对这项工作和经典壳理论进行定量比较。扩展的运动学模型引入了点向旋转作为自变量。对于壳体,将得出几何精确的壳体模型的钻头旋转公式。

著录项

  • 作者

    Fox, David Dean.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 1990
  • 页码 266 p.
  • 总页数 266
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号