首页> 外文学位 >Timing speculation and adaptive reliable overclocking techniques for aggressive computer systems.
【24h】

Timing speculation and adaptive reliable overclocking techniques for aggressive computer systems.

机译:积极的计算机系统的时序推测和自适应可靠的超频技术。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, we address different aspects of timing speculation based adaptive reliable overclocking schemes, and evaluate their role in the design of low-cost, high performance, energy efficient and dependable systems. We visualize various control knobs in the design that can be favorably controlled to ensure different design targets.;As part of this research, we extend the SPRIT3E, or Superscalar PeRformance Improvement Through Tolerating Timing Errors, framework, and characterize the extent of application dependent performance acceleration achievable in superscalar processors by scrutinizing the various parameters that impact the operation beyond worst-case limits. We study the limitations imposed by short-path constraints on our technique, and present ways to exploit them to maximize performance gains. We analyze the sensitivity of our technique's adaptiveness by exploring the necessary hardware requirements for dynamic overclocking schemes. Experimental analysis based on SPEC2000 benchmarks running on a SimpleScalar Alpha processor simulator, augmented with error rate data obtained from hardware simulations of a superscalar processor, are presented.;Even though reliable overclocking guarantees functional correctness, it leads to higher power consumption. As a consequence, reliable overclocking without considering on-chip temperatures will bring down the lifetime reliability of the chip. In this thesis, we analyze how reliable overclocking impacts the on-chip temperature of a microprocessor and evaluate the effects of overheating, due to such reliable dynamic frequency tuning mechanisms, on the lifetime reliability of these systems. We then evaluate the effect of performing thermal throttling, a technique that clamps the on-chip temperature below a predefined value, on system performance and reliability. Our study shows that a reliably overclocked system with dynamic thermal management achieves 25% performance improvement, while lasting for 14 years when being operated within 353K.;Over the past five decades, technology scaling, as predicted by Moore's law, has been the bedrock of semiconductor technology evolution. The continued downscaling of CMOS technology to deep sub-micron gate lengths has been the primary reason for its dominance in today's omnipresent silicon microchips. Even as the transition to the next technology node is indispensable, the initial cost and time associated in doing so presents a non-level playing field for the competitors in the semiconductor business. As part of this thesis, we evaluate the capability of speculative reliable overclocking mechanisms to maximize performance at a given technology level. We evaluate its competitiveness when compared to technology scaling, in terms of performance, power consumption, energy and energy delay product. We present a comprehensive comparison for integer and floating point SPEC2000 benchmarks running on a simulated Alpha processor at three different technology nodes in normal and enhanced modes. Our results suggest that adopting reliable overclocking strategies will help skip a technology node altogether, or be competitive in the market, while porting to the next technology node.;Reliability has become a serious concern as systems embrace nanometer technologies. In this dissertation, we propose a novel fault tolerant aggressive system that combines soft error protection and timing error tolerance. We replicate both the pipeline registers and the pipeline stage combinational logic. The replicated logic receives its inputs from the primary pipeline registers while writing its output to the replicated pipeline registers. The organization of redundancy in the proposed Conjoined Pipeline system supports overclocking, provides concurrent error detection and recovery capability for soft errors, intermittent faults and timing errors, and flags permanent silicon defects. The fast recovery process requires no checkpointing and takes three cycles. Back annotated post-layout gate-level timing simulations, using 45nm technology, of a conjoined two-stage arithmetic pipeline and a conjoined five-stage DLX pipeline processor, with forwarding logic, show that our approach, even under a severe fault injection campaign, achieves near 100% fault coverage and an average performance improvement of about 20%, when dynamically overclocked. (Abstract shortened by UMI.)
机译:本文研究了基于时序推测的自适应可靠超频方案的各个方面,并评估了它们在低成本,高性能,节能和可靠系统设计中的作用。我们将设计中的各种控制旋钮可视化,可以很好地进行控制以确保实现不同的设计目标。;作为本研究的一部分,我们扩展了SPRIT3E或通过容许时序误差,框架实现超标量性能改进,并描述了与应用相关的性能范围通过检查影响最坏情况下的操作的各种参数,可以在超标量处理器中实现加速。我们研究了短路径约束对我们的技术施加的限制,并提出了利用它们来最大限度地提高性能的方法。我们通过探索动态超频方案的必要硬件要求来分析技术自适应性的敏感性。提出了基于在SimpleScalar Alpha处理器仿真器上运行的SPEC2000基准的实验分析,并补充了从超标量处理器的硬件仿真获得的错误率数据。即使可靠的超频保证了功能的正确性,也会导致更高的功耗。结果,在不考虑芯片温度的情况下进行可靠的超频将降低芯片的使用寿命可靠性。在本文中,我们分析了可靠的超频如何影响微处理器的片上温度,并评估了由于这种可靠的动态频率调整机制而导致的过热对这些系统的使用寿命的影响。然后,我们评估执行热节流的技术对系统性能和可靠性的影响,该技术将片上温度钳制在预定值以下。我们的研究表明,具有动态热管理功能的可靠超频系统可实现25%的性能提升,并且在353K以内运行时可持续14年。;在过去的五十年中,摩尔定律所预测的技术扩展一直是半导体技术的发展。 CMOS技术不断缩小规模以达到深亚微米的栅极长度,一直是其在当今无处不在的硅微芯片中占主导地位的主要原因。即使过渡到下一个技术节点是必不可少的,这样做的初始成本和时间也为半导体业务的竞争者提供了一个不公平的竞争环境。作为本论文的一部分,我们评估了推测性可靠超频机制在给定技术水平下最大化性能的能力。与技术规模相比,我们在性能,功耗,能源和能源延迟产品方面评估其竞争力。我们对在正常模式和增强模式下在三个不同技术节点上的模拟Alpha处理器上运行的整数和浮点SPEC2000基准进行了全面的比较。我们的结果表明,在移植到下一个技术节点时,采用可靠的超频策略将有助于完全跳过技术节点或在市场上具有竞争力。随着系统采用纳米技术,可靠性已成为一个严重的问题。本文提出了一种兼具软错误保护和定时容错能力的新型容错攻击系统。我们复制流水线寄存器和流水线阶段组合逻辑。复制逻辑从主管道寄存器接收其输入,同时将其输出写入复制管道寄存器。提议的联合管道系统中的冗余组织支持超频,为软错误,间歇性故障和定时错误提供并发错误检测和恢复功能,并标记永久性硅缺陷。快速恢复过程不需要检查点,并且需要三个周期。使用45nm技术对带有转发逻辑的联合两级算术流水线和联合的五级DLX流水线处理器进行回注后布局门级时序仿真,表明即使在严重的故障注入活动下,我们的方法也可以实现,动态超频后,故障覆盖率接近100%,平均性能提高约20%。 (摘要由UMI缩短。)

著录项

  • 作者

    Subramanian, Viswanathan.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号