首页> 外文学位 >Development of three-dimensional enriched crack tip finite element for linear poroelastic materials.
【24h】

Development of three-dimensional enriched crack tip finite element for linear poroelastic materials.

机译:线性多孔弹性材料三维富集裂纹尖端有限元的开发。

获取原文
获取原文并翻译 | 示例

摘要

The computation of stress intensity factors in poroelastic materials have long been an important concept in fracture mechanics. Poroelastic materials consist of a solid, linearly elastic skeleton (also called the matrix) permeated by an interconnected network of pores (voids) filled with a fluid (liquid or gas). There are many industrial application involving poroelastic materials. For example, in the field of geomechanics, it is desirable to understand and model the rock fracture behavior in order to effectively construct tunnels and predict landslides. In the field of oil mechanics, modeling rock breakage and rock drilling is a very important factor in determining oil drilling. Poroelastic materials may also be applied to integrated circuits, because they have very low dielectric constants due to the presence of pores, which makes them excellent candidates for use as dielectric materials.;FRAC3D is a program developed by researchers at Lehigh University specifically to solve fracture mechanics problems with the benefits of enriched elements, which provide the user an advantage over standard commercial codes (ANSYS, ABAQUS, etc.) in terms of singularity and mesh refinement issues. This is achieved by utilizing the correct asymptotic crack tip stress field for direct computation of the stress intensity factors. The proposed poroelastic model presented in this study allows for solid-fluid interaction that couples pore pressure to solid skeleton displacements, and utilizes enriched finite element approach to model the fracture behavior of poroelastic materials. This study focuses on the development of the local stiffness matrix formulation for a poroelastic enriched crack tip element.;A 20-noded hexahedron enriched-poroelastic element has been added to the FRAC3D program. To verify the correct setup of the enriched-poroelastic stiffness matrix, two sample problems involving a 1-element and 8-element poroelastic model have been solved using the newly modified enriched-poroelastic FRAC3D program with the enriched-poroelastic element. Each model contains a set of various special boundary conditions such as constraining the pore pressures, constraining the stress intensity factors, and decoupling of the pore pressure-mechanical displacements. FRAC3D results using the newly defined enriched-poroelastic element are compared with the original FRAC3D program. All cases resulted in very good agreement, with an average percent error of less than 0.0002% in nodal displacements, and an average percent error of less than 0.00046% for the nodal pressure diffusion, indicating the correct formulation of the enriched-poroelastic stiffness matrix.
机译:长期以来,多孔弹性材料中应力强度因子的计算一直是断裂力学中的重要概念。多孔弹性材料由坚固的线性弹性骨架(也称为基质)组成,骨架上填充有充满流体(液体或气体)的孔隙(空隙)的互连网络。有许多涉及多孔弹性材料的工业应用。例如,在地质力学领域,期望理解和模拟岩石破裂行为,以便有效地构造隧道和预测滑坡。在石油力学领域,对岩石破裂和岩石钻探进行建模是确定石油钻探的重要因素。多孔弹性材料也可以应用于集成电路,因为它们由于存在孔而具有非常低的介电常数,这使其成为用作介电材料的极佳候选者。FRAC3D是利哈伊大学研究人员开发的专门用于解决断裂的程序富元素优势带来的机械问题,就奇异性和网格细化问题而言,这为用户提供了优于标准商业代码(ANSYS,ABAQUS等)的优势。这是通过利用正确的渐近裂纹尖端应力场直接计算应力强度因子来实现的。在这项研究中提出的提议的多孔弹性模型允许固-液相互作用,将孔隙压力耦合到固体骨架位移,并利用丰富的有限元方法来模拟多孔弹性材料的断裂行为。这项研究的重点是为多孔弹性富集的裂纹尖端元件开发局部刚度矩阵公式。; FRAC3D程序中添加了20节点六面体富集多孔弹性元件。为了验证富孔隙弹性刚度矩阵的正确设置,使用了新的带有富孔隙弹性元素的富孔隙弹性FRAC3D程序,解决了涉及1个元素和8个元素多孔弹性模型的两个样本问题。每个模型都包含一组各种特殊的边界条件,例如,约束孔隙压力,约束应力强度因子以及孔隙压力与机械位移的解耦。使用新定义的富多孔弹性元素的FRAC3D结果与原始FRAC3D程序进行了比较。所有情况都产生了很好的一致性,节点位移的平均百分比误差小于0.0002%,节点压力扩散的平均百分比误差小于0.00046%,这说明了富孔弹性刚度矩阵的正确公式。

著录项

  • 作者

    Han, Bo.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2009
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号