首页> 外文学位 >Pool boiling heat transfer characteristics of nanofluids and nanocoatings.
【24h】

Pool boiling heat transfer characteristics of nanofluids and nanocoatings.

机译:纳米流体和纳米涂层的池沸腾传热特性。

获取原文
获取原文并翻译 | 示例

摘要

This research is a qualitative and quantitative investigation to understand the behaviors of nanofluids and nanocoated surfaces during pool boiling heat transfer. The pool boiling behavior of low concentration nanofluids, a mixture created by dispersing nanoparticles in pure water, was experimentally studied over a flat heater. A majority of this work was conducted using Al2O 3 nanoparticles dispersed in water and some minor work was performed with others (CuO and diamond nanoparticles). Results from this study are consistent with those previously reported in demonstrating that boiling of nanofluids produces a nanocoating on the heater surface, and which in turn increases the critical heat flux (CHF). This study also investigates the possible causes responsible for the deposition of nanoparticles on the heater surface. Through experimental, it was shown that microlayer evaporation, during nanofluid boiling, was responsible for the nanoparticle coating formed on the heater surfaces. Subjecting the heater surfaces to extended periods of nanofluid boiling has shown an eventual degradation in BHT that has been attributed to modifications in surface conditions that are continuously being altered through additional nanoparticle deposition. The wetting and wicking characteristics of the nanocoating are investigated by measuring the apparent contact angle and by conducting vertical dip test. It is found that the CHF enhancement mechanism is dominated by the wetting characteristics of the nanocoating and a relationship between the quasi-static contact angle and the CHF value is provided.;The fundamental pool boiling test of nanofluid exhibited some unique characteristics like an enhanced CHF, transient boiling behaviors, and nanoparticle deposition on the heater surface. After this fundamental study, further investigation was conducted to understand the effects of the nanocoating in pool boiling heat transfer. The thickness and the uniformity of the nanocoating dictated the BHT and the CHF conditions based on this. A methodology for an optimal nanocoating development is provided. The optimal nanocoating provided unique pool boiling characteristics and was generated by controlling the thickness and uniformity of the nanoparticle precipitation on the heater's surface. Parametric tests on pool boiling using this nanocoated surface are investigated. The parametric test involved variations in nanoparticle size, system pressure, heater orientation, and heater size. For this, different Al2O 3 nanoparticles sizes (75 +/- 50, 139 +/- 100, and 210 nm +/- 200 nm), system pressures (20 ∼ 200 kPa), heater orientations (0 ∼ 180°), and heater sizes (0.75 x 0.75 ∼ 2 cm x 2 cm) were used. Results indicate that the pool boiling performance is dependent on the parameters tested, except the particle size, for both uncoated and nanocoated surfaces. The nanoparticle coated heater consistently showed a dramatic CHF enhancement relative to the uncoated surface at all tested conditions.
机译:这项研究是定性和定量研究,以了解在池沸腾换热过程中纳米流体和纳米涂层表面的行为。通过在平板加热器上实验研究了低浓度纳米流体(通过将纳米颗粒分散在纯水中而生成的混合物)的池沸腾行为。大部分工作是使用分散在水中的Al2O 3纳米颗粒进行的,而其他一些工作(CuO和金刚石纳米颗粒)则进行了一些次要的工作。这项研究的结果与先前报道的证明纳米流体沸腾在加热器表面产生纳米涂层的结果一致,这反过来又增加了临界热通量(CHF)。这项研究还调查了造成纳米颗粒在加热器表面沉积的可能原因。通过实验表明,在纳米流体沸腾过程中,微层蒸发是造成加热器表面形成纳米颗粒涂层的原因。使加热器表面经受长时间的纳米流体沸腾已经显示出BHT的最终降解,这归因于表面条件的变化,该变化通过附加的纳米颗粒沉积而不断变化。通过测量表观接触角并进行垂直浸渍试验研究了纳米涂层的润湿和芯吸特性。发现CHF的增强机理是由纳米涂层的润湿特性决定的,并提供了准静态接触角和CHF值之间的关系。纳米流体的基本池沸腾试验表现出一些独特的特性,如增强的CHF ,瞬时沸腾行为和纳米颗粒在加热器表面的沉积。在进行了基础研究之后,进行了进一步的研究,以了解纳米涂层在池沸腾传热中的作用。基于此,纳米涂层的厚度和均匀性决定了BHT和CHF条件。提供了用于最佳纳米涂层开发的方法。最佳的纳米涂层具有独特的熔池沸腾特性,是通过控制加热器表面纳米颗粒沉淀的厚度和均匀性而产生的。研究了使用这种纳米涂层表面对池沸腾进行的参数测试。参数测试涉及纳米颗粒尺寸,系统压力,加热器方向和加热器尺寸的变化。为此,需要使用不同尺寸的Al2O 3纳米颗粒尺寸(75 +/- 50、139 +/- 100和210 nm +/- 200 nm),系统压力(20〜200 kPa),加热器方向(0〜180°)和使用加热器尺寸(0.75 x 0.75〜2 cm x 2 cm)。结果表明,对于未涂层和纳米涂层表面,除颗粒大小外,池沸腾性能均取决于测试的参数。在所有测试条件下,纳米粒子涂覆的加热器相对于未涂覆的表面始终显示出显着的CHF增强。

著录项

  • 作者

    Kwark, Sang Muk.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号