首页> 外文学位 >Numerical simulations of diffusion jets and flames.
【24h】

Numerical simulations of diffusion jets and flames.

机译:扩散射流和火焰的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

Numerical simulations of unsteady, diffusion jets and flames are performed using a dual time, fully coupled, implicit procedure. Solutions of these low Mach number flowfields are obtained at each time step by iterating in a pseudo-time ;The flowfields of interest comprise laminar, axisymmetric fuel jets diffusing into, and reacting with, coflowing air. The reaction between the fuel and air is formulated in terms of a conserved scalar by employing an infinite rate chemistry model. The accuracy of the numerical formulation is verified by comparison with experimental measurements of steady flames and unsteady helium-air jets. In general, the computed solutions are found to be within 10% of the experimental values.;The growth of instabilities in heterogeneous helium-air jets and diffusion flames is studied and contrasted with the characteristics of homogeneous air jets. Numerical experiments at low Richardson numbers, where buoyancy is not significant, indicate that density differences stabilize the flowfield and heterogeneous jets are less responsive to jet forcing than homogeneous jets. These flowfields, however, are similar in that they are both convectively unstable and remain undisturbed unless there is a continual source of perturbation. As the Richardson number is raised, buoyancy becomes more significant and heterogeneous jets respond more strongly to forcing. At buoyancy dominated conditions, the flowfield becomes inherently unstable and large vortices are seen to appear and grow spontaneously, causing both the flame and the helium-air jet to flicker. For this flow condition, the portion of the jet beyond three diameters from the exit continues to exhibit the characteristics of convective instability, but the region within the first diameter exhibits absolute instability. The flow in the absolutely unstable region of the jet oscillates in a narrow frequency band determined by the temporal growth of disturbance in this region. These self-driven perturbations generate oscillations that grow spatially in the convectively unstable region which follows. This substantially improves the mixing between the jet and the freestream.
机译:非稳态扩散射流和火焰的数值模拟是使用双重时间完全耦合隐式过程进行的。这些低马赫数流场的解决方案是在每个时间步上通过伪时间迭代获得的;目标流场包括层状,轴对称的燃料射流,这些射流扩散到同流空气中并与之反应。燃料和空气之间的反应是通过采用无限速率化学模型根据守恒标量来制定的。通过与稳定火焰和不稳定氦气射流的实验测量值进行比较,验证了数值公式的准确性。通常,计算出的解在实验值的10%以内。;研究了异质氦空气喷嘴和扩散火焰中不稳定性的增长,并与均匀空气喷嘴的特性进行了对比。在低Richardson数(其中浮力不显着)的数值实验表明,密度差异可稳定流场,并且非均质射流比均质射流对射流强迫的响应更小。但是,这些流场的相似之处在于,它们都是对流不稳定的,除非受到持续的扰动,否则它们不会受到干扰。随着Richardson数的增加,浮力变得更加显着,异质喷气机对强迫的反应也更加强烈。在浮力为主的条件下,流场固有地变得不稳定,并且可以看到大涡旋的出现并自发生长,从而导致火焰和氦气射流都闪烁。对于这种流动状态,射流从出口开始超过三个直径的部分继续表现出对流不稳定性的特征,但是第一直径内的区域则表现出绝对的不稳定性。射流的绝对不稳定区域中的流动在一个狭窄的频带中振荡,该频带由该区域中干扰的时间增长决定。这些自驱动的扰动产生振荡,该振荡在随后的对流不稳定区域中在空间上增大。这大大改善了射流和自由流之间的混合。

著录项

  • 作者

    Hosangadi, Ashvin.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1990
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号