首页> 外文学位 >Analysis of cyclic crack growth under rolling contact loading conditions.
【24h】

Analysis of cyclic crack growth under rolling contact loading conditions.

机译:滚动接触载荷条件下循环裂纹扩展的分析。

获取原文
获取原文并翻译 | 示例

摘要

The fatigue failure of components undergoing repeated contact loading, such as bearings, gears and rails often involves the propagation of cracks under complex loading paths. Additional complications are given by the frictional shear tractions which develop on the crack face, the non-linear nature of the material properties, and the presence of residual stresses.;The present work introduces a versatile finite element model which makes it possible to study subsurface, frictional Mode II cracks subjected to rolling contact loading, under general conditions of plane strain. The model may address the linear-elastic or linear-elastic-kinematic-plastic material behaviors. The influence of system geometry and type of loading on the crack driving force is also evaluated. The results of the finite element model are compared with analytical solutions for the non-zero crack face friction coefficient, and for an elastic material confirm the soundness of the model. In agreement with experimental results, the model predicts a faster propagation rate from the trailing tip. The increase in crack tip driving force due to the onset of cyclic plasticity is found to be easily related to material constants. The crack tip driving force, ;Cyclic crack propagation experiments under cyclic torque plus alternating compression are described. An alternative experimental method to determine the crack propagation rate under nominal Mode III conditions is introduced. The experimentally observed reduction in the propagation rate are qualitatively explained. The morphology of the resulting fracture surface is described, as well as its influence on the propagation rate. A new technique aimed to find an effective crack face friction coefficient is presented. The complex behavior of a Mode III shear crack under compression is qualitatively described.
机译:承受反复接触载荷的部件(例如轴承,齿轮和导轨)的疲劳失效通常涉及在复杂载荷路径下裂纹的扩展。裂纹面上产生的摩擦剪切力,材料特性的非线性特性以及残余应力的存在给我们带来了更多的复杂性。本工作介绍了一种通用的有限元模型,这使得研究地下表面成为可能。 ,在平面应变的一般条件下,摩擦型II裂纹承受滚动接触载荷。该模型可以解决线性弹性或线性弹性运动塑性材料的行为。还评估了系统几何形状和载荷类型对裂纹驱动力的影响。将有限元模型的结果与非零裂纹面摩擦系数的解析解进行比较,并针对弹性材料确定模型的可靠性。与实验结果一致,该模型从尾端预测出更快的传播速率。发现由于循环可塑性的出现而导致的裂纹尖端驱动力的增加很容易与材料常数有关。描述了裂纹尖端驱动力;在循环扭矩加交替压缩条件下的循环裂纹扩展实验。介绍了另一种确定名义III型条件下裂纹扩展速率的实验方法。定性地解释了实验观察到的传播速率降低。描述了所得断裂表面的形态及其对传播速率的影响。提出了一种旨在寻找有效裂纹面摩擦系数的新技术。定性描述了III型剪切裂纹在压缩下的复杂行为。

著录项

  • 作者

    Bastias, Pedro Cesar.;

  • 作者单位

    Vanderbilt University.;

  • 授予单位 Vanderbilt University.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1990
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号