首页> 外文学位 >Investigating the role of ADP-forming acetyl-CoA synthetase from the protozoan parasite Entamoeba histolytica.
【24h】

Investigating the role of ADP-forming acetyl-CoA synthetase from the protozoan parasite Entamoeba histolytica.

机译:研究来自原生动物寄生虫组织解组织变形虫的ADP形成乙酰辅酶A合成酶的作用。

获取原文
获取原文并翻译 | 示例

摘要

ADP-forming acetyl-CoA synthetase (ACD; EC 6.2.1.13) catalyzes the reversible conversion of acetyl-CoA to acetate coupled to the production of ATP. This enzyme is present only in certain acetate-producing archaea and a limited number of bacteria and eukaryotes. ACD belongs to the same NDP-forming acyl-CoA synthetase enzyme superfamily as succinyl-CoA synthetase (SCS; EC 6.2.1.4) from the citric acid cycle, and a similar three-step mechanism involving a phosphoenzyme intermediate was originally proposed for this enzyme.;ACD has been postulated to be a major acetate-producing enzyme in the protozoan parasite Entamoeba histolytica and may contribute to ATP production. Biochemical and kinetic characterization of recombinant E. histolytica ACD (EhACD) revealed that this enzyme may function in the direction of acetate production for generation of ATP and CoA during growth in the high glucose environment of the small intestine, and in acetate assimilation to acetyl-CoA in the high acetate environment of the lower intestine during colonization. EhACD utilizes multiple substrates including propionate and propionyl-CoA supporting an additional proposed role in amino acid degradation. EhACD activity is regulated by both ATP and PPi, important energy molecules in E. histolytica.;The ACD mechanism has been controversial, as a required second phosphorylation step was proposed for the Pyrococcus furiosus enzyme. Investigation of the catalytic role of the two proposed phosphorylation sites in EhACD revealed that His252, the site of phosphorylation in the original three-step mechanism, is essential for activity and His533, the proposed second phosphorylation site, is important but not essential. Likewise, Glu213, proposed to play a role in phosphorylation/ dephosphorylation of His252, is also required but Asp674 thought to stabilize the phosphohistidine is not. These results suggest that EhACD follows a three-step mechanism with a single phosphoenzyme intermediate.;Additional conserved active site residues were examined for their role in catalysis. Asp314 was shown to be essential for activity, possibly in both a catalytic role and a structural role. Alteration at this position resulted in complete loss of activity, and computational modeling based on the Candidatus Korarchaeum cryptofilum ACD-I structure suggests that this residue may be critical for dimerization. Future directions for understanding the complex mechanism of ACD and its physiological role are presented.
机译:形成ADP的乙酰辅酶A合成酶(ACD; EC 6.2.1.13)催化乙酰辅酶A向乙酸酯的可逆转化,并产生ATP。该酶仅存在于某些产生乙酸盐的古细菌和数量有限的细菌和真核生物中。从柠檬酸循环开始,ACD与琥珀酰-CoA合成酶(SCS; EC 6.2.1.4)属于相同的形成NDP的酰基-CoA合成酶超家族,最初提出了一种涉及磷酸酶中间体的类似三步机理ACD被认为是原生动物寄生虫组织解脂变形虫中主要的乙酸生产酶,可能有助于ATP的产生。在小肠高葡萄糖环境中生长过程中,重组组织溶埃希氏菌ACD(EhACD)的生化和动力学特性表明,该酶可能在乙酸生产方向上产生ATP和CoA,并与乙酸-乙酰基同化。移殖过程中下肠高乙酸盐环境中的CoA。 EhACD利用包括丙酸酯和丙酰辅酶A在内的多种底物,在氨基酸降解中起到了额外的作用。 EhACD的活性受溶组织性大肠杆菌中重要的能量分子ATP和PPi的调节。ACD的机理一直存在争议,因为激烈热球菌提出了第二步磷酸化步骤。对两个拟议的EhACD磷酸化位点的催化作用的研究表明,His252(最初的三步机制中的磷酸化位点)对于活性至关重要,而His533(拟议的第二个磷酸化位点)很重要但不是必需的。同样,也需要被提议在His252的磷酸化/去磷酸化中起作用的Glu213,但是不需要Asp674来稳定磷酸组氨酸。这些结果表明,EhACD具有单一磷酸酶中间体的三步机理。研究了其他保守的活性位点残基在催化中的作用。已显示Asp314对于活性是必不可少的,可能在催化作用和结构作用上均如此。在该位置的改变导致活性完全丧失,并且基于隐球菌假丝酵母ACD-1结构的计算模型表明该残基对于二聚化可能至关重要。提出了理解ACD的复杂机制及其生理作用的未来方向。

著录项

  • 作者

    Jones, Cheryl Page.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Biochemistry.;Molecular biology.;Microbiology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号