首页> 外文学位 >Reduction and segmentation of 4D data cubes for high-content analysis FLIM-FRET.
【24h】

Reduction and segmentation of 4D data cubes for high-content analysis FLIM-FRET.

机译:减少和分割4D数据立方体以进行高含量分析FLIM-FRET。

获取原文
获取原文并翻译 | 示例

摘要

Fluorescence lifetime imaging (FLIM) is a powerful optical imaging technique. The lifetime of a fluorescent molecule is capable of revealing important information about its local environment. When combined with Forster resonance energy transfer (FRET), FLIM-FRET can be used to indirectly measure nanoscale interactions such as protein-protein interactions, protein-DNA interactions, or protein conformational changes. These events are identified by estimating parameters from the collected FLIM-FRET images using various model-based approaches. The quantitative accuracy of these approaches is typically dependent on factors such as signal-to-noise ratio as well as the number of temporal points (or time gates depending on the method) acquired when sampling the fluorescence decays. For complex applications such as hyperspectral or in vivo imaging, collecting many time points results in lengthy acquisition times which suppress the wide-spread implementation of FLIM-FRET techniques. Additionally, these complex applications typically result in larger amounts of data which can be cumbersome and difficult to process without significant computational resources. In this work, I present several methods that enable the reduction and segmentation of the data cubes resulting from FLIM-FRET analysis.;An initial investigation seeks to elucidate the effect of the number and location of time gates on model parameter estimation accuracy. In silico experiments are used to obtain preliminary results which are then validated via in vitro and in vivo experimental data. It will be shown that 10 equally-spaced time gates allow the robust estimation of parameters of interest. Next, an optimal experimental design approach relying upon sensitivity analysis is used to better quantify parameter estimation using various numbers of time gates. Results are validated via in vivo experiments and compared to those obtained in the previous investigation. Finally, methods for estimation improvement and data reduction are developed and applied to a hyperspectral FLIM-FRET system. A global analysis algorithm enables improved estimation error margins while reducing the amount of data needed for accurate results. Furthermore, global analysis reduces the effect of experimental variations across a sample.
机译:荧光寿命成像(FLIM)是一种强大的光学成像技术。荧光分子的寿命能够揭示有关其局部环境的重要信息。当与Forster共振能量转移(FRET)结合使用时,FLIM-FRET可用于间接测量纳米级相互作用,例如蛋白质-蛋白质相互作用,蛋白质-DNA相互作用或蛋白质构象变化。通过使用各种基于模型的方法通过从收集的FLIM-FRET图像中估计参数来识别这些事件。这些方法的定量精度通常取决于一些因素,例如信噪比以及对荧光衰减进行采样时获得的时间点数(或时间门,取决于方法)。对于高光谱或体内成像等复杂应用,收集许多时间点会导致获取时间过长,从而抑制了FLIM-FRET技术的广泛实施。另外,这些复杂的应用程序通常会导致大量的数据,如果没有大量的计算资源,这些数据将很繁琐且难以处理。在这项工作中,我提出了几种方法,这些方法能够减少和分割FLIM-FRET分析产生的数据立方体。初步研究旨在阐明时间门的数量和位置对模型参数估计精度的影响。计算机模拟实验用于获得初步结果,然后通过体外和体内实验数据对其进行验证。将显示10个等距的时间门允许对感兴趣的参数进行鲁棒的估计。接下来,使用依赖于灵敏度分析的最佳实验设计方法来使用各种时间门来更好地量化参数估计。通过体内实验验证结果,并将其与先前研究中获得的结果进行比较。最后,开发了用于估计改进和数据缩减的方法,并将其应用于高光谱FLIM-FRET系统。全局分析算法可提高估计误差容限,同时减少获得准确结果所需的数据量。此外,整体分析降低了样品中实验变化的影响。

著录项

  • 作者

    Omer, Travis J.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号