首页> 外文学位 >Investigation of electromagnetic induction retrievals of sea ice thickness using models and measurements.
【24h】

Investigation of electromagnetic induction retrievals of sea ice thickness using models and measurements.

机译:使用模型和测量研究海冰厚度的电磁感应检索。

获取原文
获取原文并翻译 | 示例

摘要

Using sea ice as a test material, this dissertation explores how electromagnetic responses interact with low-induction-number composite materials as a function of instrument footprint size and shape. This research combines several interdisciplinary topics including electrical engineering, materials science in composites, signal processing, and the geophysics of sea ice itself. Specifically, this work explores the development of new best practices that address consistency issues with electromagnetic induction instruments used on sea ice that employ electrical conductivity as a material property measurement. It does so by using two methods: modeling and measurements. For modeling, a three-dimensional, full-physics, heterogeneous model is used to investigate the electromagnetic field response of several sea ice cases. These cases include changing the material makeup of the sea ice, as well as using different transmitter locations and orientations, with the focus being how instrument footprint varies in each simulated case. For measurements, a co-calibration routine, among two physically different EM induction instruments in terms of instrument footprint, is developed and analyzed. Since these types of instruments are commonly used to measure conductivity in sea ice environments, historical calibration routines are only valid for one instrument at a time. The developed method presented herein provides a statistical solution for the material conductivities of both sea ice and seawater, as well as a solution for the actual ice thickness. These solutions are all based on field measurements made on sea ice during a data collection event held in Barrow, Alaska, in March 2013.
机译:本文以海冰为测试材料,探讨了电磁响应如何与低电感数量的复合材料相互作用,这是仪器足迹尺寸和形状的函数。这项研究结合了多个交叉学科主题,包括电气工程,复合材料科学,信号处理以及海冰本身的地球物理学。具体而言,这项工作探索了开发新的最佳实践的方法,这些新方法解决了在海冰上使用电导率作为材料特性测量指标的电磁感应仪器的一致性问题。它通过使用两种方法来做到这一点:建模和测量。为了进行建模,使用了三维全物理异构模型来研究几个海冰盒的电磁场响应。这些情况包括更改海冰的材料组成,以及使用不同的变送器位置和方向,重点是每种模拟情况下仪器的占地面积如何变化。为了进行测量,在仪器占地面积方面,开发并分析了两个物理上不同的EM感应仪器之间的共同校准程序。由于这些类型的仪器通常用于测量海冰环境中的电导率,因此历史校准例程一次仅对一台仪器有效。本文介绍的改进方法为海冰和海水的材料电导率提供了统计解决方案,并为实际冰层厚度提供了解决方案。这些解决方案全部基于2013年3月在阿拉斯加巴罗举行的数据收集活动期间在海冰上进行的现场测量。

著录项

  • 作者

    Samluk, Jesse Paul.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Electromagnetics.;Electrical engineering.;Geophysics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号