首页> 外文学位 >An experimental investigation of a two-dimensional Scramjet inlet at flow Mach numbers of 8 to 25 and stagnation temperatures of 800 to 4,100 K.
【24h】

An experimental investigation of a two-dimensional Scramjet inlet at flow Mach numbers of 8 to 25 and stagnation temperatures of 800 to 4,100 K.

机译:在流量马赫数为8到25和停滞温度为800到4100 K时二维Scramjet入口的实验研究。

获取原文
获取原文并翻译 | 示例

摘要

The development of air-breathing hypersonic vehicles, such as the National Aerospace Plane, NASP, and NASP Derived Vehicles, NDV, requires the detail understanding of the physics of the hypersonic internal and external flowfields. The internal flow through the Supersonic Combustion Ramjet, Scramjet, is particularly important for these vehicles since hypersonic velocities to Mach = 25 must be achieved by the use of this type of propulsion system. The limited available experimental data for the internal air flow in a Scramjet inlet at high Mach numbers and stagnation temperatures motivated this study. In this investigation, a 0.25 m span variable geometry 2-D Scramjet inlet was designed, constructed and tested in the Rensselaer Polytechnic Institute 0.61 m diameter Hypersonic Shock Tunnel. For these tests, the flow Mach number in the test section was varied from 8 to 25 and the reservoir temperatures investigated were in the 800-4,100 K range. The free stream until Reynolds number varied from 1.3 {dollar}times{dollar} 10{dollar}sp4{dollar} to 2.3 {dollar}times{dollar} 10{dollar}sp6{dollar} m{dollar}sp{lcub}-1{rcub}{dollar} and the leading edge free stream Knudsen number was in the 0.1-31 range. The lower end of the reservoir temperature, 800-1,100 K, was generated by operating the shock tunnel in the Reflected Mode. On the other hand, the Equilibrium Interface Mode of operation, with helium in the driver section, was required to produce the upper end of the stagnation temperature range of 4,100 K, with real gas effects.; The tests included surface and pitot pressure measurements along the Scramjet inlet centerline, and Schlieren and Air-Luminosity photographs were taken simultaneously with the pressure measurements to provide the internal flow visualization of the shock waves and the boundary layer. Both the pressure measurements and the flow visualization indicated a very complex internal flow structure in the duct passage. This complexity is caused by the hypersonic shock wave and the boundary layer interactions as well as the large free stream Knudsen numbers and the high reservoir temperatures.
机译:呼吸高超音速飞行器的发展,例如美国国家航空航天飞机(NASP)和NASP衍生飞行器(NDV),需要对高超音速内部和外部流场的物理特性有详细的了解。对于这些车辆,通过超音速冲压冲压发动机的内部流动特别重要,因为必须通过使用这种类型的推进系统来达到高达25马赫的超音速。在高马赫数和停滞温度下,超燃冲压发动机进气口内部空气流动的有限可用实验数据推动了这项研究。在这项研究中,设计了一个0.25 m跨距可变几何二维Scramjet入口,并在Rensselaer Polytechnic Institute直径0.61 m的Hypersonic Shock Tunnel中进行了设计和测试。对于这些测试,测试部分的流动马赫数从8到25不等,所研究的储层温度在800-4100 K范围内。直到雷诺数的免费流从1.3倍{dollar} 10 {dollar} sp4 {dollar}到2.3 {dollar} times {dollar} 10 {dollar} sp6 {dollar} m {dollar} sp {lcub}- 1 {rcub} {dollar},前沿自由流Knudsen数在0.1-31范围内。储层温度的下限为800-1,100 K,是通过在反射模式下运行激波隧道而产生的。另一方面,在驱动器部分使用氦气的平衡界面操作模式需要产生停滞温度范围4100 K的上限,并产生实际气体效应。测试包括沿Scramjet进气口中心线进行表面和皮托管压力测量,并在压力测量的同时拍摄Schlieren和空气光度照片,以提供冲击波和边界层的内部流动可视化。压力测量和流量可视化都表明管道通道中的内部流量结构非常复杂。这种复杂性是由高超声速冲击波和边界层相互作用以及大的自由流克努森数和高的储层温度引起的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号