首页> 外文学位 >Geomagnetic polarity reversals, Earth's core evolution, and conditions for dynamo action in the cores of terrestrial exoplanets.
【24h】

Geomagnetic polarity reversals, Earth's core evolution, and conditions for dynamo action in the cores of terrestrial exoplanets.

机译:地磁极性反转,地球核心演化以及地球系外行星核心中发电机作用的条件。

获取原文
获取原文并翻译 | 示例

摘要

Planetary dynamos are responsible for the generation of large-scale magnetic fields and are ubiquitous in the solar system. Magnetic fields generated by dynamo action in a planetary core offer unique insight into the internal structure, composition, and energetics of the planet. This dissertation consists of two main parts, the first focuses on long period fluctuations in Earth's magnetic field and the second explores conditions for dynamo action in the cores of terrestrial exoplanets. The first part consists of three projects using first-principle numerical magnetohydrodynamic models of the geodynamo to investigate the relationship between two fundamental, but poorly understood, aspects of the geomagnetic field: magnetic polarity reversals and the influence of core evolution. The first project explores the dependence of various dynamo properties on the relative strengths of buoyancy and rotation, and identifies several dynamical regimes whose magnetic field fluctuations over time are consistent with the paleomagnetic field. We find that normal evolution of buoyancy production in the core and planetary rotation rate over 100 Myr produce a negligible change in dynamo polarity reversal rate and field intensity, implying that the observed fluctuations in the geomagnetic reversal rate requires either anomalous core evolution or a rough dynamo regime boundary. The second project models the long time-scale evolution of the Earth's core using time-dependent control parameters, which are constrained by the secular cooling of the core and tidal deceleration. We find that fluctuations in the geodynamo are closely coupled to the evolution of the core, which implies a connection between the long time-scale trends in the seafloor geomagnetic polarity reversal rate and the rate of core evolution over the last 100 Myr. In the third project we investigate the hypothesis that the long period (∼200 Myr) oscillation in paleomagnetic reversal frequency is controlled by the heat flow amplitude at the core-mantle boundary (CMB) by calculating a continuous 200 Myr long geodynamo simulation subject to an oscillation in core heat flow. We demonstrate that an increase in the superadiabatic core heat flow evolves the model from a superchron to a reversing state, and vice-versa, producing a simulated reversal record similar to the seafloor paleomagnetic reversal record. This implies that fluctuations in the thermal evolution of the core are recorded in the paleomagnetic record, with periods of high core heat flow corresponding to frequent polarity reversals, similar to the present-day geomagnetic reversal rate (∼4 Myr--1), and periods of low heat flow corresponding to superchron states with no polarity reversals, similar to the CNS. In the second part we explore the conditions for dynamo action in the core's of terrestrial exoplanets and the possibility of their detection. We construct internal structure models for terrestrial exoplanets with 1-10 Earth masses and an Earth-like composition and structure. In order to maximize the magnetic field intensity at the planet surface, which is maintained by dynamo action in the convecting core, we assume these planets are in an optimal thermal state where the temperature profile in the mantle thermal boundary layers is at the silicate melting point. We find that magnetic field intensity increases slightly with mass and core size, such that the maximum magnetic dipole moment is about 23 times the geomagnetic dipole moment for a 10 Earth-mass planet with a large core. We find that estimates of the electron cyclotron emission spectrum for nearby exoplanet magnetic fields are generally below the current detection thresholds of the largest radio telescopes, but may be detectable in the future.
机译:行星发电机负责产生大范围的磁场,并且在太阳系中无处不在。行星芯中的发电机作用产生的磁场为行星的内部结构,成分和能量学提供了独特的见解。本文主要由两部分组成,第一部分着眼于地球磁场的长期波动,第二部分探讨了地球系外行星核心中的发电机作用条件。第一部分由三个项目组成,这些项目使用地震动的第一性原理数值磁流体动力学模型研究了地磁场的两个基本但知之甚少的方面之间的关系:磁极性反转和岩心演化的影响。第一个项目探讨了各种发电机特性对浮力和旋转相对强度的依赖关系,并确定了几种动力学机制,这些机制的磁场随时间的波动与古磁场一致。我们发现,核心的浮力产生的正常演变和超过100 Myr的行星旋转速度对发电机极性反转率和磁场强度的影响可忽略不计,这意味着观察到的地磁反转率波动需要异常的核心演化或粗糙的发电机政权边界。第二个项目使用与时间有关的控制参数来模拟地球核心的长时间尺度演化,这些参数受核心的长期冷却和潮汐减速度的约束。我们发现,地震动的波动与岩心的演化密切相关,这暗示着海底地磁极性反转率的长时间尺度趋势与最近100 Myr的岩心演化率之间存在联系。在第三个项目中,我们研究了一个假设,即通过计算一个连续的200 Myr长的大地动力学模拟,并通过一个连续的200 Myr长的大地动力学模拟,古磁反转频率中的长周期(〜200 Myr)振荡受芯-幔边界(CMB)处的热流振幅控制。堆芯热流的振荡。我们证明,超级绝热核心热流的增加使模型从超时变到逆转状态,反之亦然,从而产生类似于海底古磁逆转记录的模拟逆转记录。这暗示着铁心热演化的波动记录在古磁记录中,其中高铁心热流周期对应于频繁的极性反转,类似于当今的地磁反转率(〜4 Myr--1),并且类似于CNS的无极性反转的超级状态对应的低热流周期。在第二部分中,我们探索了地面系外行星核心中发电机作用的条件及其被发现的可能性。我们为地球系外行星构造了内部结构模型,其地球质量为1-10,具有类地球的组成和结构。为了使对流核心中的发电机作用保持的行星表面磁场强度最大化,我们假设这些行星处于最佳热状态,其中地幔热边界层的温度剖面处于硅酸盐熔点。我们发现,磁场强度随质量和铁心尺寸的增加而略有增加,因此,对于一个具有大铁心的10个地球质量行星,最大磁偶极矩约为地磁偶极矩的23倍。我们发现,对附近系外行星磁场的电子回旋加速器发射光谱的估算通常低于最大射电望远镜的当前检测阈值,但将来可能会被检测到。

著录项

  • 作者

    Driscoll, Peter E.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Geophysics.;Physics Electricity and Magnetism.;Planetology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号