首页> 外文学位 >Structural dynamic analysis of bearingless rotor blade.
【24h】

Structural dynamic analysis of bearingless rotor blade.

机译:无轴承转子叶片的结构动力学分析。

获取原文
获取原文并翻译 | 示例

摘要

Conventional articulated helicopter rotor systems typically have mechanical hinges, dampers and bearings in the hub to relieve high blade root moments and to ensure dynamic stability. This hardware operates in a high stress field and experiences large cyclic and centrifugal loads. These devices require continuous inspection and frequent maintenance. In addition, they can significantly degrade the reliability of the rotor system. In order to improve helicopter reliability, reduce maintenance, and potentially improve rotor hub aerodynamic characteristics, the helicopter researchers have developed the hingeless and bearingless rotor by taking advantage of recent advancements in materials technology. The unique structural features of bearingless rotors calls for the development of design and modeling methodologies for laminated composite flex-structures. Indeed, the flex-structure should be flexible enough to replace the flap, lead-lag, and feathering bearings, while maintaining high strength and stiffness in the axial direction. Laminated composite materials are a material of choice for such an application. Chordwise deformations, transitional zones between different cross-sections and localized compressive stresses are all likely to be present in the flex-structure, rendering the validity of a beam model questionable.;In this research an anisotropic shallow shell model is developed that accommodates transverse shearing deformations and arbitrarily large displacements and rotations. However, strains are assumed to remain small. Two kinematic models are developed in this research: the first model uses two rotation parameters to locate the direction of the normal to the shell's mid-plane while the second one uses a rotation tensor which is composed of three parameters. The latter model, which has an in-plane rotation degree-of-freedom, allows for an automatic compatibility of the shell model with other three-dimensional structural models. A shell model is validated by comparing its predictions with several benchmark problems which include static and dynamic, linear and nonlinear, as well as isotropic and anisotropic conditions. The performance of the in-plane rotation degree-of-freedom of the shell model is tested also by solving some special configurations. In actual helicopter rotor blade problems, the shell model of the flex-structure is shown to give very different results when compared to beam models. The lead-lag and torsion modes are strongly affected, whereas flapping modes seem to be less affected. A study was also carried out to simulate a tail rotor system; the pitch actuator force is found to vary significantly when shell or beam models are used.
机译:常规的铰接式直升机旋翼系统通常在轮毂中具有机械铰链,阻尼器和轴承,以减轻高叶片根部力矩并确保动态稳定性。该硬件在高应力场中运行,并承受较大的循环和离心负载。这些设备需要连续检查和频繁维护。另外,它们会大大降低转子系统的可靠性。为了提高直升机的可靠性,减少维护并潜在地改善旋翼毂的空气动力学特性,直升机研究人员利用材料技术的最新发展开发了无铰链和无轴承旋翼。无轴承转子的独特结构特征要求开发层压复合挠性结构的设计和建模方法。实际上,挠性结构应具有足够的挠性,以替代襟翼,超前滞后和滑动轴承,同时在轴向上保持较高的强度和刚度。层压复合材料是此类应用的选择材料。在挠曲结构中可能会出现弦向变形,不同横截面之间的过渡区域和局部压缩应力,从而使梁模型的有效性令人怀疑。;在本研究中,开发了一种各向异性的浅壳模型,该模型可以适应横向剪切变形以及任意大的位移和旋转。但是,假定应变很小。在本研究中,开发了两个运动学模型:第一个模型使用两个旋转参数来定位垂直于壳体中平面的法线方向,而第二个模型使用由三个参数组成的旋转张量。具有平面内旋转自由度的后一种模型允许壳体模型与其他三维结构模型自动兼容。通过将壳模型的预测与几个基准问题进行比较来验证壳模型,这些问题包括静态和动态,线性和非线性以及各向同性和各向异性条件。还通过解决一些特殊配置来测试壳模型的平面内旋转自由度的性能。在实际的直升机旋翼桨叶问题中,与梁模型相比,挠性结构的壳模型显示出非常不同的结果。超前滞后和扭转模式受到很大影响,而拍打模式似乎受到的影响较小。还进行了模拟尾桨系统的研究。当使用壳模型或梁模型时,发现俯仰致动器力有很大变化。

著录项

  • 作者

    Chiang, Wuying.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1992
  • 页码 261 p.
  • 总页数 261
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号