首页> 外文学位 >Micro-electro-opto-fluidic systems for biomedical drug screening and electromagnetic filtering and cloaking applications.
【24h】

Micro-electro-opto-fluidic systems for biomedical drug screening and electromagnetic filtering and cloaking applications.

机译:用于生物医学药物筛选以及电磁过滤和隐身应用的微电光系统。

获取原文
获取原文并翻译 | 示例

摘要

Microfluidic is a multidisciplinary field that deals with the flow of liquid inside micro-meter size channels. In order to be considered as microfluidics, at least one dimension of the channel should be in the range of one micrometer or sub-millimeter. Microfluidic technology includes designing, manufacturing, formulating devices and processing the liquid. As numerous bio-science and engineering techniques have utilized microfluidics and highly integrated with this remarkable technology, the microfluidic platform technology has extended to several sub-techs: micro-scale analysis, soft-lithography fabrication, polymer science and processing, on-chip sensing and micro-scale fluid manipulation. Those sub-techs have been developed rapidly along with the booming microfluidics.;The advance of those techniques has promoted microfluidic system diverse and widespread applications. Some examples that employ this technology include on-chip drug screening, micro-scale analysis, flexible electronics, biochemical assays. Many engineering field, such as optics, electronics, chemicals and electromagnetics, have been integrated with the microfluidic system to form a completed system for sensing, analyzing or realizing some specific applications.;Through the fusion of those technologies with microfluidics, many emerging technologies are well initiated, such as optofluidics and electrofluidics. Despite of rapid advancement of each parent technology field, those intersected technologies are still in their infancy and many technological elements and even some fundamental concepts are just now being developed. Thus, it provides great opportunity to explore more about those emerging technologies. Some particular areas that mainly interest researchers including cost deduction, effective fabrication, highly integration, portability and applicability. Due to the wide and diversity nature of the microfluidic technology and numerous combinations from the integration with other fields, it is very difficult to choose a single aspect or particular subject to research. Hence, we would like to focus on the application orientated microfluidic techniques that integrated with other engineering areas, in particular optics and electronics. Correspondingly, I will present four microfluidic platforms that integrated with optics, electronics for different application purpose.;First of all, fiber-optics was integrated into a microfluidic device to detect muscular force generation of microscopic nematodes. The integrated opto-fluidic device is capable of measuring the muscular force of nematode worms normal to the translational movement direction with high sensitivity, high data reliability, and simple device structure. The ability to quantify the muscular forces of small nematode worms will provide a new approach for screening mutants at single animal resolution.;Secondly, electronic grids were integrated into a microfluidic chip to realize on-chip tracking of nematode locomotion. The micro-electro-fluidic approach is capable of real-time lens-less and image-sensor-less monitoring of the locomotion of microscopic nematodes. The technology showed promise for overcoming the constraint of the limited field of view of conventional optical microscopy, with relatively low cost, good spatial resolution, and high portability.;Thirdly, electromagnetic spit ring resonator (SRR) structure was adopted as microfluidic channel filled with liquid metal to fabricate a tunable microfluidic microwave electronics called meta-atom. The presented meta-atom is capable of tuning its electromagnetic (EM) response characteristics over a broad frequency range via simple mechanical stretching. The meta-atom in this study presents a simple but effective building block for realizing mechanically tunable metamaterials.;Finally, based on the meta-atom we previously developed, an array of electromagnetic SRR shaped microfluidic channels filled with liquid metal to form a flexible metamaterial-based microwave electronic "skin" or meta-skin. When stretched, the meta-skin performs as a tunable frequency selective surface with a wide resonance frequency tuning range. When wrapped around a curved dielectric material, the meta-skin functions as a flexible "cloaking" surface to significantly suppress scattering from the surface of the dielectric material along different directions.;The microfluidic platform will find great applications when it integrates with other technologies. The development of such integration will greatly intersect different research areas and benefit all of the intersected technologies and fields, thus broadening the future applications.
机译:微流体是一个多学科领域,涉及微米级尺寸通道内的液体流动。为了被认为是微流体,通道的至少一维应在一微米或亚毫米的范围内。微流体技术包括设计,制造,配制设备和处理液体。由于许多生物科学和工程技术已经利用微流体技术并将其与这一非凡的技术高度集成,因此微流体平台技术已扩展到多个子技术:微尺度分析,软光刻制造,聚合物科学和处理,片上传感和微型流体操纵。这些子技术随着微流体的蓬勃发展而迅速发展。这些技术的进步促进了微流体系统的多样化和广泛的应用。采用该技术的一些示例包括片上药物筛选,微型分析,柔性电子学,生化分析。光学,电子,化学和电磁等许多工程领域已与微流体系统集成在一起,形成了一个完整的系统,用于感测,分析或实现某些特定应用。通过这些技术与微流体的融合,许多新兴技术得以实现。启动良好,例如光流体学和电流体学。尽管每个母技术领域都取得了飞速发展,但这些相交的技术仍处于起步阶段,许多技术元素甚至一些基本概念也正在开发中。因此,它提供了一个很好的机会来探索有关这些新兴技术的更多信息。研究人员主要感兴趣的一些特定领域包括成本降低,有效制造,高度集成,可移植性和适用性。由于微流体技术的广泛性和多样性,以及与其他领域的集成带来的众多组合,因此很难选择一个方面或一个特定的研究课题。因此,我们希望专注于与其他工程领域(尤其是光学和电子领域)集成的面向应用的微流体技术。相应地,我将介绍四个微流体平台,这些平台已将光学,电子技术集成在一起,以用于不同的应用目的。首先,将光纤集成到微流体设备中,以检测细线虫的肌肉力量的产生。集成的光流体装置能够以高灵敏度,高数据可靠性和简单的装置测量线虫蠕虫的垂直于平移运动方向的肌肉力。量化小线虫蠕虫的肌肉力量的能力将为在单个动物分辨率下筛选突变体提供一种新的方法。其次,将电子网格集成到微流控芯片中以实现线虫运动的芯片上跟踪。微电流体方法能够实时监控无镜线虫的运动,并且无需镜头和传感器即可进行实时监控。该技术有望克服传统光学显微镜的局限性,具有成本相对较低,空间分辨率好,便携性高等优点。第三,采用电磁唾液环共振器(SRR)结构作为填充了微流体的通道。液态金属来制造可调谐的微流体微波电子器件,称为meta-atom。通过简单的机械拉伸,提出的超原子能够在很宽的频率范围内调节其电磁(EM)响应特性。这项研究中的超原子为实现机械可调超材料提供了一个简单而有效的构建块。最后,基于我们先前开发的超原子,一系列由液态金属填充以形成柔性超材料的电磁SRR形微流体通道阵列微波电子“皮肤”或超皮肤。拉伸时,超常表层可作为具有宽谐振频率调谐范围的可调频率选择表面。当包裹在弯曲的介电材料上时,超常表层起到柔性“隐身”表面的作用,以显着抑制从介电材料表面沿不同方向的散射。当微流体平台与其他技术集成时,它将找到巨大的应用。这种集成的发展将极大地交叉不同的研究领域,并使所有相交的技术和领域受益,从而拓宽了未来的应用范围。

著录项

  • 作者

    Liu, Peng.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Electrical engineering.;Biomedical engineering.;Optics.;Materials science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:50:16

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号