首页> 外文学位 >Designer silica layers for advanced applications: Processing and properties.
【24h】

Designer silica layers for advanced applications: Processing and properties.

机译:适用于高级应用的设计师二氧化硅层:加工和性能。

获取原文
获取原文并翻译 | 示例

摘要

Recently, as scientists have investigated the application of conventional MEMS devices to biological systems, the exciting fields of bio-MEMS and microfluidics have emerged. Due to their small size, bio-MEMS and microfluidics devices offer the advantage of requiring only small sample and reagent volumes, in a potentially low-cost, integrated package. Such devices have the potential to significantly advance point-of-care diagnostics devices and improve overall patient care. However, due to the extremely small feature size, the large surface area-to-volume ratio in these devices makes controlling surface interactions of critical importance. Recently, there has been a shift to polymeric materials for fabrication of microfluidics devices due to their lower cost, ease of device fabrication by various processes, varied and favorable material properties, and, in some cases, pre-existing regulatory agency approvals. As a result, various surface modification strategies for polymeric surfaces have been proposed, but with only limited success.;The proven success of organosilicon-based precursors in a wide variety of surface modification strategies has been demonstrated, with a body of knowledge on the general subject dating back nearly fifty years. However, these proven methodologies cannot be transferred to many important polymeric materials due to a lack of sufficient reactive groups on the surface. If any polymer surface could be made reactive by some intermediate treatment, the wide body of knowledge of organosilicon-based surface modification chemistries could be leveraged to advance the state-of-the-art in surface modification for microfluidics applications, where polymeric substrates are commonly encountered.;This thesis reports on the processing properties and chemical properties of a vapor deposited silica layer, which is formed from the vapor phase hydrolysis of silicon tetrachloride. This layer can be deposited at low temperatures to a wide variety of substrates, including glasses, metals, fibers, polymers, and plastics. This process has the potential to enable common organosilicon-based chemistries on polymer surfaces, but before the potential impact of this technology can be realized, the fundamental groundwork must be laid.;In this work, a series of investigations into the properties of the vapor deposited silica layer are conducted. It is determined that the morphology of the silica layer depends strongly on the relative pressures of the precursor gases. Furthermore, the vapor deposited silica layer has many commonalities with conventionally prepared silica materials (fumed or precipitated) and does support the formation of self-assembled monolayers for organosilicon-based precursors. However, there are also some differences in chemical reactivity of surface groups on the vapor deposited silica layer relative to the surface of conventionally prepared silica materials, which contribute to different chemical behavior in some circumstances. Also, the deposition of the silica layers under study here is confirmed on several model polymeric substrates by ATR-FTIR and atomic force microscopy.
机译:近来,随着科学家们研究了常规MEMS器件在生物系统中的应用,生物MEMS和微流体技术的令人兴奋的领域已经出现。由于其体积小,生物MEMS和微流控设备具有潜在优势,可在潜在的低成本集成封装中仅需要少量样品和试剂。这样的设备具有极大地改进即时诊断设备并改善整体患者护理的潜力。然而,由于极小的特征尺寸,这些设备中较大的表面积体积比使得控制表面相互作用至关重要。近来,由于其较低的成本,易于通过各种方法制造装置,变化的和有利的材料特性以及在某些情况下已经获得监管机构的批准,已经转向用于制造微流体装置的聚合物材料。结果,提出了用于聚合物表面的各种表面改性策略,但仅取得了有限的成功。;有机硅基前体在各种表面改性策略中已证明了成功的经验,并且具有对一般表面的认识。这个主题可以追溯到近五十年前。但是,由于表面上缺乏足够的反应性基团,因此这些行之有效的方法无法转移到许多重要的聚合材料上。如果可以通过某种中间处理使任何聚合物表面具有反应性,则可以利用有机硅基表面改性化学的广泛知识来推动微流体应用中表面改性的最新技术,其中微流体应用通常是聚合物基材本论文报道了由四氯化硅的气相水解形成的气相沉积二氧化硅层的加工性能和化学性能。该层可以在低温下沉积到各种基材上,包括玻璃,金属,纤维,聚合物和塑料。该工艺有可能在聚合物表面上实现普通的有机硅基化学反应,但在实现该技术的潜在影响之前,必须奠定基础基础。在这项工作中,需要对蒸汽的性质进行一系列研究。进行沉积的二氧化硅层。已确定二氧化硅层的形态在很大程度上取决于前体气体的相对压力。此外,气相沉积的二氧化硅层与常规制备的二氧化硅材料(气相法或沉淀法)具有许多共性,并且确实支持有机硅基前体的自组装单层的形成。然而,相对于常规制备的二氧化硅材料的表面,气相沉积的二氧化硅层上的表面基团的化学反应性也存在一些差异,这在某些情况下导致不同的化学行为。同样,通过ATR-FTIR和原子力显微镜在一些模型聚合物基材上证实了正在研究的二氧化硅层的沉积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号