首页> 外文学位 >A unifying model for helices in proteins.
【24h】

A unifying model for helices in proteins.

机译:蛋白质螺旋的统一模型。

获取原文
获取原文并翻译 | 示例

摘要

Helices are the most common secondary structural element in proteins. This one simple structural motif has been used to explain all types of protein structural hypotheses. Yet, critical analysis of helices in protein crystallographic structures indicates that common interpretation of the helical model needs to be updated to reflect high resolution data and modern physical models. Data from 45,661 protein crystallography experiments were analyzed and found to support a "molten helix" interpretation. Thus, high resolution experimental data is unified with the concept of a statistical mechanical peptide chain that samples conformational space from a single smooth potential well located between the classical alpha-helical and 310-helical coordinates on the potential energy landscape. Shared hydrogen bonds provide a mechanism to ease the transition between classical i → i+3 and i → i+4 hydrogen bonds endpoints, and are an essential feature of the "molten helix" model.;Detailed analysis of crystallographic and theoretical methods support a unified "molten helix" model. Statistical distributions of hydrogen bonds helical conformations are presented to obviate sources of experimental error and inaccurate modeling assumptions. These observations suggest improvements in crystallographic refinement procedures, protein folding models, protein-protein interface constraints, peptidomimetic design, and more.;Crystallographic structures represent a single low-energy "snapshot" of a protein conformation, but proteins are truly dynamic. Molecular dynamics simulations employing molecular mechanics force fields are state-of-the-art technology for simulating dynamic protein behavior. Simulations are analyzed for helix and hydrogen bond content and compared to crystallographic data.;From analysis of molten helices, an empirical "molten helix" potential was derived. Weighted distributions of helical backbone conformations may be enumerated with all possible sidechain configurations for all possible amino acids. This library of helical configurations was screened, in silico, for shape similarity with a complementary protein cleft. Thus, a computational algorithm is presented for selecting an optimal sequence of helical sidechains for binding a cognate protein cleft.
机译:螺旋是蛋白质中最常见的二级结构元素。这一简单的结构基序已用于解释所有类型的蛋白质结构假设。然而,对蛋白质晶体结构中螺旋的关键分析表明,需要更新螺旋模型的常见解释以反映高分辨率数据和现代物理模型。分析了来自45,661个蛋白质晶体学实验的数据,发现该数据支持“熔融螺旋”解释。因此,高分辨率实验数据与统计机械肽链的概念统一,该统计机械肽链从位于势能图上经典α螺旋和310螺旋坐标之间的单个光滑势阱中采样构象空间。共享的氢键提供了缓解经典i→i + 3和i→i + 4氢键端点之间过渡的机制,并且是“熔融螺旋”模型的基本特征。;详细的晶体学和理论方法分析支持统一的“熔融螺旋”模型。提供了氢键螺旋构象的统计分布,以消除实验误差的来源和不正确的建模假设。这些观察结果表明,在晶体学细化程序,蛋白质折叠模型,蛋白质-蛋白质界面约束,拟肽设计等方面已有改进。晶体结构代表蛋白质构象的单个低能“快照”,但蛋白质确实是动态的。利用分子力学力场的分子动力学模拟是模拟动态蛋白质行为的最新技术。分析了螺旋和氢键含量的模拟结果,并与晶体学数据进行了比较。;从熔融螺旋的分析中,得出了经验“熔融螺旋”的电势。对于所有可能的氨基酸,可以用所有可能的侧链构型列举出螺旋骨架构象的加权分布。对该螺旋结构文库进行了计算机筛选,以寻找与互补蛋白裂口相似的形状。因此,提出了一种计算算法,用于选择最佳的螺旋侧链序列以结合同源蛋白裂口。

著录项

  • 作者

    Kuster, Daniel J.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Chemistry Biochemistry.;Engineering Biomedical.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 238 p.
  • 总页数 238
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;生物物理学;生物医学工程;
  • 关键词

  • 入库时间 2022-08-17 11:37:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号