首页> 外文学位 >Enabling natural product biosynthesis with novel synthetic biology tools.
【24h】

Enabling natural product biosynthesis with novel synthetic biology tools.

机译:使用新型合成生物学工具实现天然产物的生物合成。

获取原文
获取原文并翻译 | 示例

摘要

Microorganisms and plants have evolved to produce a myriad array of complex molecules known as natural products or secondary metabolites. Recent advances in molecular biology and genomics have revolutionized our ability to discover biosynthetic pathways that synthesize natural products. During my thesis research, I used various synthetic biology strategies to enable Escherichia coli, Saccharomyces cerevisiae and Streptomyces lividans to heterologously produce two value-added compounds: triacetic acid lactone and fosfomycin. Triacetic acid lactone is an precursor used to synthesize an important aromatic compound, 1,3,5-trihydroxylbenzene. Rational design of a 6-methylsalycylic acid synthase variant allowed the biosynthesis of triacetic acid lactone from a renewable feedstock D-glucose in S. cerevisiae. The maximal titer was subsequently optimized to 1.7 g/L by fed-batch fermentation.;Fosfomycin belongs to a group of compounds, called phosphonates, many of which have useful therapeutic properties. The fosfomycin gene cluster was cloned and heterologously expressed in S. lividans. Gene insertion and deletion were performed and the minimal cluster was determined to be composed of fom1-4, fomA-D and a transcriptional regulator fomR, based on which, a new biosynthetic mechanism for fosfomycin was proposed. In addition, it was found that, despite the significant structural differences among many of phosphonates, their biosynthetic routes contain an unexpected common intermediate, 2-hydroxyethylphosphonate, which is synthesized from phosphonoacetaldeyhyde by a distinct family of metal-dependent alcohol dehydrogenases. Detailed biochemical studies on these enzymes revealed that the reduction of phosphonoacetaldeyhyde to 2-hydroxyethylphosphonate may represent a common step in the biosynthesis of many phosphonate natural products, an observation that may lend insight into the evolution of phosphonate biosynthetic pathways and may prove highly useful in the mining of microbial genomes for novel phosphonate antibiotics and for suggesting the potential chemical structures of the products of these gene clusters.;In addition, I developed several novel synthetic biology tools for natural product research and development. The first tool is DNA assembler, which allows rapid construction of large recombinant DNAs in a single-step fashion through yeast in vivo homologous recombination. Further applications of DNA assembler to construct a highly versatile shuttle system and assemble an entire genome are in progress.
机译:微生物和植物已经进化为产生无数种复杂分子,称为天然产物或次生代谢产物。分子生物学和基因组学的最新进展彻底改变了我们发现合成天然产物的生物合成途径的能力。在论文研究过程中,我使用了多种合成生物学策略使大肠杆菌,酿酒酵母和轻链链霉菌能够异源产生两种增值化合物:三乙酸内酯和磷霉素。三乙酸内酯是用于合成重要的芳香族化合物1,3,5-三羟基苯的前体。 6-甲基水杨酸合酶变体的合理设计使得啤酒糖酵母中的可再生原料D-葡萄糖能够生物合成三乙酸内酯。随后通过分批补料发酵将最大效价优化至1.7 g / L。磷霉素属于一组称为膦酸酯的化合物,其中许多具有有用的治疗特性。磷霉素基因簇被克隆并在S. lividans中异源表达。进行基因插入和缺失,确定最小簇由fom1-4,fomA-D和转录调节子fomR组成,在此基础上,提出了新的磷霉素生物合成机理。此外,已发现,尽管许多膦酸酯之间存在显着的结构差异,但它们的生物合成途径包含出乎意料的常见中间体2-羟乙基膦酸酯,该中间体是由膦酰基乙醛由独特的金属依赖性醇脱氢酶家族合成的。对这些酶进行的详细生化研究表明,将膦酰基乙醛还原为2-羟乙基膦酸酯可能代表了许多膦酸酯天然产物生物合成中的一个共同步骤,这一发现可能有助于深入了解膦酸酯生物合成途径的进化,并可能证明对磷酸酯生物合成途径的发展非常有用。挖掘微生物基因组以寻找新型的膦酸酯抗生素,并暗示这些基因簇的潜在化学结构。此外,我还开发了几种用于天然产物研究和开发的新型合成生物学工具。第一个工具是DNA组装器,它可以通过酵母体内同源重组,一步一步地快速构建大型重组DNA。 DNA装配子在构建高度通用的穿梭系统和装配整个基因组方面的进一步应用正在进行中。

著录项

  • 作者

    Shao, Zengyi.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Biology Molecular.;Engineering Chemical.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号