首页> 外文学位 >Numerical simulation of time-dependent thermocapillary convection in layered fluid systems.
【24h】

Numerical simulation of time-dependent thermocapillary convection in layered fluid systems.

机译:分层流体系统中随时间变化的热毛细管对流的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

Time-dependent thermocapillary convection in single and encapsulated fluid layers is considered. Through a parametric study of thermocapillary convection in a single layer of a Prandtl number 6.78 fluid, a thermal-convective mechanism for oscillatory thermocapillary convection is explored. The instability is shownto depend upon temporal coupling between large scale thermal structures within the flow field and the temperature sensitive free surface. This interaction is initiated by cooling of the free surface from below by a cool finger of fluid convected from the cold wall beneath the large central eddy. A primary result is the development of a stability diagram for the Cartesian thermocapillary system presenting the critical Marangoni number separating steady from the time-dependent flow states as a function of aspect ratio for the range of values between 2.3 and 3.8. A minimum critical aspect ratio near 2.3 and a minimum critical Marangoni number near 20000 are predicted. Below these critical parameters, steady convection is found within the parameter ranges investigated.; Extension of this work to encapsulated systems of moderate Prandtl number fluids targets both (a) water encapsulation of Fluorinert FC-75 and (b) ethylene glycol encapsulated by FC-75 from below and hexadecane from above. Particular attention is focused on modes of time-dependence and on the implications of using Antonow's Rule to predict the thermal coefficients of interface tension from surface tension data. The primary findings are that similar mechanisms for time-dependent thermocapillary convection exist for single layer and encapsulated layer fluid systems, gravity has a stabilizing influence on buoyant/thermocapillary convection with respect to time-dependence up to the transition from steady to time-dependent buoyancy driven convection, shear effects at a thermocapillary interface may reduce convection in the encapsulated fluid layer, and the absence of reliable data on the thermal coefficients of interface tension is a primary impediment to simulations of targeted fluid systems.; The computer program developed for this work integrates the two-dimensional, time-dependent Navier-Stokes equations and the energy equation by a time-accurate method on a stretched, staggered mesh. Flat free surfaces and fluid/fluid interfaces are assumed.
机译:考虑单个和包封的流体层中随时间变化的热毛细管对流。通过对单层普朗特数为6.78的流体中热毛细管对流的参数研究,探索了振荡热毛细管对流的热对流机理。所示的不稳定性取决于流场内大型热结构与温度敏感自由表面之间的时间耦合。这种相互作用是通过从大中心涡流下方的冷壁对流的冷流体手指从下方冷却自由表面而引发的。主要结果是开发了笛卡尔热毛细管系统的稳定性图,该图显示了从2.3到3.8范围内的纵横比,将稳定的与时间相关的流动状态与稳定的时间相关的临界Marangoni数。预计最小临界纵横比在2.3附近,最小临界Marangoni数在20000附近。在这些关键参数以下,在所研究的参数范围内发现了稳定对流。这项工作扩展到中等普朗特数流体的封装系统,既针对(a)Fluorinert FC-75的水包封,又针对(b)由FC-75的下方封装的乙二醇和十六烷的上方封装。特别关注的是时间依赖性模式以及使用Antonow规则从表面张力数据预测界面张力的热系数的含义。主要发现是,对于单层和包封层流体系统,存在与时间相关的热毛细管对流的相似机制,重力对浮力/热毛细管对流的时间依赖性直至从稳定浮力到时间依赖性浮力的转换都具有稳定的影响。在驱动对流的情况下,热毛细管界面处的剪切效应可能会降低封装的流体层中的对流,而缺乏界面张力热系数的可靠数据是目标流体系统模拟的主要障碍。为此工作而开发的计算机程序通过时间精确的方法在拉伸的交错网格上集成了二维,与时间相关的Navier-Stokes方程和能量方程。假定平坦的自由表面和流体/流体界面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号