首页> 外文学位 >Equilibria and stability of non-adiabatic Vlasov-Maxwellian plasmas.
【24h】

Equilibria and stability of non-adiabatic Vlasov-Maxwellian plasmas.

机译:非绝热Vlasov-Maxwellian血浆的平衡性和稳定性。

获取原文
获取原文并翻译 | 示例

摘要

Adiabatic plasma physics, whereby particles gyrate tightly around magnetic field lines, constitutes a well studied area of plasma physics. On the other hand, plasmas in which a significant number of particles have orbits comparable to the confinement scale have many interesting properties which are not yet well understood. In particular, high energy particles appear to ignore turbulence (1), and do not behave like fluids. MHD equations cannot generally be adapted to modeling of non-adiabatic plasma; for example, the field reversed configuration is predicted in the MHD model to have a tilt mode instability which is not experimentally observed (2). We consider in this dissertation the general case of arbitrary orbit size. Specifically, the solutions which we consider are drifted Maxwellian distributions which satisfy the Vlasov equation, and we call these Vlasov-Maxwellian (or V-M) solutions. The Maxwellian form for the distribution function is chosen for its immunity to ion-ion collisional diffusion, which becomes more significant as Larmor radius is increased. We impose the condition that all Maxwellian ion species have common temperature and drift velocity so that the ion-ion collision operator collapses to zero. In section 2 we derive self-consistant equilibria for V-M plasmas. First we show that all V-M plasmas must be rigid rotors. Next we derive the V-M equilibrium equation for a single ion species. Finally we numerically evaluate several solutions in finite geometry. Solutions are found which are field reversed and have high density contrast. In section 3 an electrostatic linear stability analysis is carried out for a restricted class of V-M plasmas. The cases considered involve cylindrical geometry and are finite in the radial direction. A dispersion relation is obtained which is sufficiently simple that a complete investigation of finite orbit stability can be carried out. Both analytic and numerical stability analyses are presented.
机译:绝热等离子体物理学使粒子围绕磁场线紧密地旋转,构成了等离子体物理学领域的一个深入研究领域。另一方面,其中大量颗粒具有与限制尺度相当的轨道的等离子体具有许多有趣的特性,这些特性尚未得到很好的理解。特别是,高能粒子似乎忽略了湍流(1),并且行为不像流体。 MHD方程通常不能适应非绝热等离子体的建模;例如,在MHD模型中预测了场反转配置具有倾斜模式的不稳定性,这在实验中是无法观察到的(2)。在本文中,我们考虑任意轨道大小的一般情况。具体来说,我们考虑的解决方案是满足Vlasov方程的漂移Maxwellian分布,我们将其称为Vlasov-Maxwellian(或V-M)解决方案。选择Maxwellian形式的分布函数是因为它具有抗离子-离子碰撞扩散的能力,随着拉莫尔半径的增加,这一点变得更加重要。我们强加所有麦克斯韦离子物种具有共同的温度和漂移速度的条件,以使离子-离子碰撞算子崩溃为零。在第2节中,我们得出V-M等离子体的自洽平衡。首先,我们证明所有V-M等离子必须是刚性转子。接下来,我们导出单个离子物种的V-M平衡方程。最后,我们对有限几何中的几种解进行数值评估。发现了场反转且具有高密度对比度的解决方案。在第3节中,对受限类别的V-M等离子体进行了静电线性稳定性分析。所考虑的情况涉及圆柱几何形状,并且在径向方向上是有限的。获得的色散关系非常简单,可以对有限轨道稳定性进行完整的研究。提出了解析和数值稳定性分析。

著录项

  • 作者

    Spivey, Brett Alverson.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 1992
  • 页码 90 p.
  • 总页数 90
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号