首页> 外文学位 >A combined piezoelectric-hydraulic actuator system and an electromechanical simulation method for active vibration control of rotordynamic systems.
【24h】

A combined piezoelectric-hydraulic actuator system and an electromechanical simulation method for active vibration control of rotordynamic systems.

机译:组合的压电液压执行器系统和机电仿真方法,用于转子动力系统的主动振动控制。

获取原文
获取原文并翻译 | 示例

摘要

A combined piezoelectric-hydraulic actuator system is developed for active vibration control of a rotorbearing system. The system configuration is designed by positioning the piezo-actuator remotely from the controlled structure and transmitting the control force via a hydraulic line and two pistons. Liquid plastic is employed as a transmission "fluid" to obtain high bulk modulus and low leakage. An acoustic measurement technique is used in predicting its bulk modulus.; A modified piezohydraulic system also is developed by integrating the piezoelectric pushers and input pistons into a compact block which can provide x-y direction driving force. Copper tubing is chosen instead of stainless steel tubing for ease of assembly. The liquid plastic transmission fluid composition was adjusted to meet the following requirements: incompressibility and low viscosity in order to be used in a long, bending transmission tubing with better dynamic behavior for AVC. A new integrated multifunctional PID analog/digital controller was applied in the feedback control electronics. A significant reduction of vibration was achieved in the air turbine driven-dual overhung rotating test rig at NASA Lewis by this new piezohydraulic actuator system.; A reliable closed loop AVC electromechanical simulation is essential for designing rotor systems supported by magnetic bearings. Accurate predictions of forced response, critical speeds and stability are required to assure machinery health and reliability. This research presents a general methodology which couples a finite element based model of the rotor with state space models of the sensors, control system and actuators. A least squares based algorithm is presented for obtaining the state space representation of the digital (DSP) controller, actuator, and power amplifiers from their measured frequency response functions. This general simulation method is illustrated by application to a cryogenic magnetic bearing test rig at NASA Lewis.; A closed loop dynamic simulation of this air turbine with active vibration control (AVC) is included in this research in order to predict rotorbearing system unbalance response with/without control. A new electromechanical model of a piezoelectric actuator is presented, and dynamic model of the hydraulic actuator is identified in a simple equation which couples input displacement, output force, and output displacement by the transfer matrix measurements. Power amplifier and PID analog/digital controller transfer functions were identified by a nonlinear optimal identification method. The state space representation which couples the rotorbearing system, feedback electronics, and piezohydraulic actuator system model is implemented in the closed loop AVC system analysis.; A special kind of liquid plastic is developed for the AVC at high and low temperature environment. Bench tests have confirmed the piezohydraulic actuator system effectiveness from {dollar}-{dollar}70{dollar}spcirc{dollar}F to 400{dollar}spcirc{dollar}F. The "long tube" (3-5 ft) actuator was developed and test results are also reported.
机译:开发了一种组合式压电液压执行器系统,用于主动控制转子轴承系统。通过将压电执行器放置在远离受控结构的位置,并通过液压管路和两个活塞传递控制力来设计系统配置。液体塑料被用作传输“流体”以获得高体积模量和低泄漏。声学测量技术用于预测其体积模量。通过将压电推杆和输入活塞集成到可提供x-y方向驱动力的紧凑块中,还开发了改进的压电液压系统。为了便于组装,选择铜管代替不锈钢管。调整液体塑料传动液的组成以满足以下要求:不可压缩性和低粘度,以便用于具有AVC更好动态性能的长的弯曲传动管中。反馈控制电子设备中采用了新的集成多功能PID PID模拟/数字控制器。通过这种新型的压电液压执行器系统,在美国宇航局刘易斯(NASA Lewis)的空气涡轮机驱动的双悬垂旋转试验装置中,振动得到了显着降低。可靠的闭环AVC机电仿真对于设计由磁轴承支撑的转子系统至关重要。需要准确预测强制响应,临界速度和稳定性,以确保机械健康和可靠性。这项研究提出了一种通用的方法,该方法将基于转子的有限元模型与传感器,控制系统和执行器的状态空间模型结合在一起。提出了一种基于最小二乘的算法,用于从其测量的频率响应函数中获得数字(DSP)控制器,执行器和功率放大器的状态空间表示。通过在NASA Lewis的低温磁性轴承测试台上的应用说明了这种通用的仿真方法。为了预测带有/不带控制的转子轴承系统的不平衡响应,本研究中包含了具有主动振动控制(AVC)的这种空气涡轮机的闭环动态仿真。提出了压电致动器的新机电模型,并通过传递矩阵测量将输入位移,输出力和输出位移耦合在一起的简单方程式识别了液压致动器的动力学模型。功率放大器和PID模拟/数字控制器传递函数通过非线性最佳识别方法进行识别。在闭环AVC系统分析中,实现了将转子轴承系统,反馈电子系统和压电液压执行器系统模型耦合在一起的状态空间表示。在高温和低温环境下,为AVC开发了一种特殊的液态塑料。台架试验已证实压电液压执行器系统的有效性从{dollar}-{dollar} 70 {dollar} spcirc {dollar} F到400 {dollar} spcirc {dollar} F。开发了“长管”(3-5英尺)执行器,并报告了测试结果。

著录项

  • 作者

    Tang, Punan.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Engineering Mechanical.; Engineering Hydraulic.; Engineering Automotive.
  • 学位 Ph.D.
  • 年度 1993
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;水利工程;自动化技术及设备;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号