首页> 外文学位 >Nitrous oxide inactivation of methionine synthase: Characterization of the chemistry yields an ultra-low resolution structural model for catalysis.
【24h】

Nitrous oxide inactivation of methionine synthase: Characterization of the chemistry yields an ultra-low resolution structural model for catalysis.

机译:甲硫氨酸合酶的一氧化二氮失活:化学性质的表征产生了超低分辨率的催化结构模型。

获取原文
获取原文并翻译 | 示例

摘要

Cobalamin-dependent methionine synthase catalyzes methyl group transfer from methyltetrahydrofolate to homocysteine to form tetrahydrofolate and methionine, with the cobalamin prosthetic group serving as an intermediate methyl carrier. The enzyme is susceptible to inactivation by the anaesthetic gas nitrous oxide, through either short-term exposure to high levels or chronic exposure to low levels of this agent. The goal of this work was to develop a biochemical model to explain how the enzyme becomes inactivated under an atmosphere of nitrous oxide. The chemical reaction between the reactive, enzyme-bound cob(I)alamin intermediate and nitrous oxide was investigated, and specific sites on the enzyme that become modified during the inactivation were identified. This was achieved by reducing the cobalamin prosthetic group to cob(I)alamin in an electrochemical cell under an atmosphere of nitrous oxide. Degradation of nitrous oxide in the cell apparently releases a damaging oxidant, proposed to be hydroxyl radical, and the observed modifications provide insight into the spatial relationship between the reactive cobalamin prosthetic group and regions of the enzyme that it must contact. Because methionine synthase is an exceptionally large monomer of 136.1 kDa, we used proteolysis to separate the enzyme into domains that were characterized using a combination of electrospray mass spectrometry and N-terminal sequence analysis. A C-terminal, 37.7 kDa domain was isolated that bound the S-adenosylmethionine coenzyme required for enzyme activation, and this proved to be the primary site of oxidative damage. The complementary, N-terminal domain of 98.4 kDa retained the bound cobalamin, and this domain was able to catalyze methyl transfer from 5-methyltetrahydrofolate to homocysteine. We have proposed and tested a model to explain how the domains of methionine synthase function together to effect catalysis, and this model provides an explanation for why the C-terminal domain that becomes modified must approach the cobalamin, the site where nitrous oxide is reductively degraded.
机译:钴胺素依赖性蛋氨酸合酶催化甲基从四氢叶酸甲基转移至高半胱氨酸以形成四氢叶酸和蛋氨酸,而钴胺素的辅基充当中间甲基载体。通过短期暴露于高水平或长期暴露于低水平的该试剂,该酶易于被麻醉性气体一氧化二氮失活。这项工作的目的是建立一个生化模型来解释该酶如何在一氧化二氮气氛下失活。研究了反应性,结合酶的钴(I)阿拉明中间体与一氧化二氮之间的化学反应,并鉴定了在失活过程中被修饰的酶的特定位点。这是通过在氧化亚氮气氛下的电化学电池中将钴胺素的辅基还原为钴(I)丙氨酸来实现的。细胞中一氧化二氮的降解显然会释放出破坏性的氧化剂,该氧化剂被认为是羟基自由基,观察到的修饰作用使洞察性钴胺素修复基团与必须接触的酶区域之间的空间关系得以深入了解。由于蛋氨酸合酶是一种非常大的单体,分子量为136.1 kDa,因此我们使用蛋白水解将酶分离为通过电喷雾质谱和N端序列分析来表征的结构域。分离出一个37.7 kDa的C末端结构域,该结构域结合了酶激活所需的S-腺苷甲硫氨酸辅酶,这被证明是氧化损伤的主要部位。 98.4 kDa的互补N末端结构域保留了结合的钴胺素,并且该结构域能够催化从5-甲基四氢叶酸向高半胱氨酸的甲基转移。我们已经提出并测试了一个模型来解释蛋氨酸合酶域如何一起发挥催化作用,该模型为为什么修饰的C末端域必须接近钴胺素(一氧化二氮被还原降解的位点)提供了解释。 。

著录项

  • 作者

    Drummond, James Thomas.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 1993
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号