首页> 外文学位 >TVD flux-difference split methods for high-speed thermochemical nonequilibrium flows with strong shocks.
【24h】

TVD flux-difference split methods for high-speed thermochemical nonequilibrium flows with strong shocks.

机译:TVD磁通差分流方法可用于具有强烈冲击的高速热化学非平衡流。

获取原文
获取原文并翻译 | 示例

摘要

This study is concerned with the numerical solution of high-speed nonequilibrium gaseous flows with strong shocks. The extension of modern total-variation-diminishing (TVD) shock-capturing schemes to include thermochemical nonequilibrium high-temperature effects is of primary interest. Partially-decoupled upwind-based TVD flux-difference split schemes for the solution of the conservation laws governing two-dimensional nonequilibrium vibrationally relaxing and chemically reacting flows of thermally-perfect gaseous mixtures are presented. Both time-split semi-implicit and factored implicit flux-limited TVD upwind schemes are described. The semi-implicit formulation is more appropriate for unsteady applications whereas the factored implicit form is useful for obtaining steady-state solutions. As well, a multigrid version of the fully implicit TVD scheme is also proposed for the more efficient computation of time-invariant solutions. The multigrid algorithm is based on the full approximation storage (FAS) and full multigrid (FMG) concepts and employs the partially-decoupled factored implicit scheme as the smoothing operator in conjunction with a four-level V-cycle coarse-grid-correction procedure.; In the proposed methods, a novel partially-decoupled flux-difference splitting approach is adopted. The fluid conservation laws and the finite-rate species concentration and vibrational energy equations are decoupled by means of a frozen flow approximation. The resulting partially-decoupled gas dynamic and thermodynamic subsystems are then integrated alternately in lagged manner within a two-stage time marching procedure, thereby providing explicit coupling between the two equation sets. Extensions of Roe's approximate Riemann solvers, giving the eigenvalues and eigenvectors of the fully coupled systems, are used to evaluate the numerical flux functions. Additional modifications to the Riemann solutions are also described which ensure that the approximate solutions are not aphysical. Moreover, concerns associated with the satisfaction of monotonicity, positivity, and maximum principles are addressed. The proposed partially-decoupled methods are shown to have some computational advantages over chemistry-split and fully coupled techniques in coping with large systems of equations with stiff source terms.; The predictive capabilities of the shock-capturing methods are demonstrated and their usefulness appraised, by solving a number of different flows with both complicated shock structure and complex nonlinear wave interactions. The problems considered include nonstationary oblique shock-wave reflections and diffractions and steady high-speed nozzle, compression ramp, and blunt-body flows. The numerical results are compared to available experimental data in many cases.
机译:该研究涉及具有强烈冲击的高速非平衡气流的数值解。人们首先关注将现代总变化减小(TVD)震荡捕获方案扩展到包括热化学非平衡高温效应。提出了基于局部解耦的迎风TVD通量差分裂方案,该方案求解了控制二维非平衡振动松弛和热反应气体混合物的化学反应的守恒定律。描述了时间分割半隐式和因式隐式通量限制的TVD迎风方案。半隐式公式更适合于不稳定应用,而分解式隐式形式对于获取稳态解很有用。同样,还提出了完全隐式TVD方案的多网格版本,以更有效地计算时不变解。多重网格算法基于完全近似存储(FAS)和完全多重网格(FMG)的概念,并结合了四级V周期粗网格校正程序,将部分解耦的分解式隐式方案用作平滑算子。 ;在提出的方法中,采用了一种新颖的部分解耦的通量差分裂方法。流体守恒律与有限速率物质浓度和振动能方程通过冻结流近似解耦。然后,将产生的部分解耦的气体动力学和热力学子系统以滞后的方式在两阶段时间行进过程中交替集成,从而在两个方程组之间提供显式耦合。 Roe近似Riemann求解器的扩展给出了完全耦合系统的特征值和特征向量,用于评估数值通量函数。还介绍了对Riemann解决方案的其他修改,以确保近似解决方案不是物理的。此外,还解决了与单调性,积极性和最大原理的满意度相关的问题。结果表明,在处理带有刚性源项的大型方程组时,所提出的部分解耦方法具有优于化学拆分和完全耦合技术的计算优势。通过解决具有复杂冲击结构和复杂非线性波相互作用的许多不同流动,证明了冲击捕捉方法的预测能力并评估了其有效性。考虑的问题包括非平稳的倾斜冲击波反射和衍射,以及稳定的高速喷嘴,压缩坡道和钝体流动。在许多情况下,将数值结果与可用的实验数据进行比较。

著录项

  • 作者

    Groth, Clinton P. T.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 1993
  • 页码 265 p.
  • 总页数 265
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号