首页> 外文学位 >Study of electrostatic interactions in condensed phase by using Brownian dynamics simulations.
【24h】

Study of electrostatic interactions in condensed phase by using Brownian dynamics simulations.

机译:通过使用布朗动力学模拟研究凝聚相中的静电相互作用。

获取原文
获取原文并翻译 | 示例

摘要

A solvent exerts its influence on dissolved molecules through the process called "solvation". The dynamics of solvation have received much attention in the last decade mainly because of the increased availability of ultrafast lasers and its profound importance in chemical reactions. A true understanding of the experimental observations can be achieved by a fruitful combination of empirical information, analytical theories and computational studies linking the two and aiding in conceptualizing the important elements of the problem. Here, computer simulations involving a simple model often used in theoretical studies to represent polar fluids is utilized: a simple cubic lattice of point dipoles undergoing rotational Brownian motion and interacting with each other and the solute (a point charge or dipole) electrostatically. Therefore, the main focus is on generic polar solvation, rather than specific solute-solvent interactions. The important results are: (i) Orientational structure induced by a charge varies considerably with solute charge and solvent polarity. However, their effects on the reaction potential are separable and can be modeled simply. (ii) The solvation free energy well is anharmonic, but appears harmonic in a given simulation, because the thermally populated region of the solvation coordinate is neatly harmonic. (iii) Non-linear statics are reflected in the dynamics. (iv) Solvation becomes faster with increasing solvent polarity while individual solvent dipoles become slower. These two dynamics are intimately related through a simple relationship. For charge solvation it leads to the control of solvation dynamics by static fluctuation magnitudes. (v) Solvation time is determined by correlations among a relatively small number (
机译:溶剂通过称为“溶剂化”的过程对溶解的分子施加影响。在过去的十年中,溶剂化的动力学受到了广泛的关注,这主要是因为超快激光的可用性不断提高以及其在化学反应中的重要性。可以通过经验信息,分析理论和计算研究的有效结合来实现对实验观察的真正理解,两者结合起来并有助于概念化问题的重要要素。在这里,利用了计算机模拟,该模拟涉及理论研究中经常使用的代表极性流体的简单模型:点偶极子的简单立方晶格经历旋转的布朗运动,并且彼此相互作用并且与溶质(点电荷或偶极子)发生静电相互作用。因此,主要重点是通用极性溶剂化,而不是特定的溶质-溶剂相互作用。重要的结果是:(i)电荷引起的取向结构随溶质电荷和溶剂极性的不同而有很大不同。但是,它们对反应电位的影响是可分离的,可以简单建模。 (ii)溶剂化自由能阱是非谐波的,但是在给定的模拟中会出现谐波,因为溶剂化坐标的热填充区域是整齐的谐波。 (iii)非线性静力学反映在动力学中。 (iv)随着溶剂极性的增加,溶剂化速度变快,而各个溶剂偶极子变慢。这两个动力学通过简单的关系密切相关。对于电荷溶剂化,它导致通过静态波动幅度控制溶剂化动力学。 (v)溶解时间由相对较小的数之间的相关性决定(

著录项

  • 作者

    Papazyan, Arno.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Chemistry Physical.;Physics Molecular.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 240 p.
  • 总页数 240
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号