首页> 外文学位 >Optimizing current delivery in defibrillation: Finite element models and experimental validation.
【24h】

Optimizing current delivery in defibrillation: Finite element models and experimental validation.

机译:优化除颤电流:有限元模型和实验验证。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation describes a method for constructing and solving detailed patient-specific three-dimensional finite element models of the human thorax for use in defibrillation studies. The method utilizes the patient's own X-ray CT scan and a simplified meshing scheme to quickly and efficiently generate a model typically composed of approximately 400,000 elements. A parameter sensitivity study on one human thorax model to examine the effects of variation in assigned tissue resistivity values, the level of anatomical detail included in the model, and the number of CT slices used to produce the model is presented. Of the seven tissues types examined, the average left ventricular (LV) myocardial voltage gradient was most sensitive to the values of myocardial and blood resistivity. Incorrectly simplifying the model, for example, modeling the heart as a homogeneous structure by ignoring the blood in the chambers, caused the average LV myocardial voltage gradient to increase by 12%. The sensitivity of the model to variations in electrode size and position was also examined. Small changes ({dollar}<{dollar}2.0 cm) in electrode position caused average LV myocardial voltage gradient values to increase by up to 12%.; In order to assess quantitatively the validity of the 3-D thoracic finite element models, we directly compared predicted voltages to those obtained experimentally. We constructed detailed 3-D subject-specific thorax models of six pigs based on their individual CT images. The models were correlated with the results of experiments conducted on the animals to measure the voltage distribution in the thorax at 52 locations during synchronized high energy shocks. One transthoracic and two transvenous electrode configurations were used in the study. The measured voltage values were compared to the model predictions resulting in a correlation coefficient of 0.927 {dollar}pm{dollar} 0.036 (average {dollar}pm{dollar} standard deviation) and a relative rms error of 28.50 {dollar}pm{dollar} 8.959%. After compensating the finite element models for the large voltage drop seen experimentally at the electrode-tissue interface, the rms error was reduced by 22% to 22.13 {dollar}pm{dollar} 5.99. In addition, by examining the computed myocardial voltage gradient distributions, differences in the efficacy of the various electrode configuration in the individual animals was revealed. This variability reinforces the potential benefit of patient-specific modeling.; In vivo tissue resistivity measurements under conditions simulating defibrillation were done in eight pigs with a tetrapolar electrode system. The tissues were exposed to voltage gradients in the range of 0.5 to 28 V/cm. The tissue resistivity values varied significantly among the animals. (Abstract shortened by UMI.)
机译:本论文描述了一种用于构建和求解用于除颤研究的详细的患者胸腔特定患者三维有限元模型的方法。该方法利用患者自己的X射线CT扫描和简化的网格划分方案来快速有效地生成通常由大约40万个元素组成的模型。提出了一项针对人类胸腔模型的参数敏感性研究,以检查指定的组织电阻率值变化,模型中包含的解剖结构细节水平以及用于生成模型的CT切片数量。在检查的七种组织类型中,平均左心室(LV)心肌电压梯度对心肌和血液的电阻率值最敏感。错误地简化了模型,例如,通过忽略腔室中的血液将心脏建模为同质结构,导致平均LV心肌电压梯度增加了12%。还检查了模型对电极尺寸和位置变化的敏感性。电极位置的小变化({dollar} <{dollar} 2.0 cm)导致平均LV心肌电压梯度值增加多达12%。为了定量评估3-D胸部有限元模型的有效性,我们直接将预测电压与通过实验获得的电压进行了比较。我们根据六只猪的个别CT图像构建了详细的3-D特定于受试者的胸部模型。将模型与对动物进行的实验结果相关联,以测量同步高能冲击过程中52个位置胸腔中的电压分布。在研究中使用了一种经胸和两种经静脉电极配置。将测得的电压值与模型预测值进行比较,得出相关系数为0.927 {pm.pm} {dollar} 0.036(平均{pm} {pm}美元标准偏差),相对均方根误差为28.50 {pm} pm {dollar。 } 8.959%。在补偿了在电极-组织界面处实验观察到的大电压降的有限元模型后,均方根误差降低了22%,降至22.13 {pm} {5.93}。另外,通过检查计算出的心肌电压梯度分布,揭示了个体动物中各种电极结构的功效差异。这种可变性增强了针对特定患者的建模的潜在好处。在模拟除颤的条件下,在具有四极电极系统的八只猪中进行了体内组织电阻率测量。将组织暴露于0.5至28 V / cm的电压梯度中。动物之间的组织电阻率值差异很大。 (摘要由UMI缩短。)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号