首页> 外文学位 >Three-dimensional aerodynamic shape optimization using discrete sensitivity analysis.
【24h】

Three-dimensional aerodynamic shape optimization using discrete sensitivity analysis.

机译:使用离散灵敏度分析的三维空气动力学形状优化。

获取原文
获取原文并翻译 | 示例

摘要

An aerodynamic shape optimization procedure based on discrete sensitivity analysis is extended to treat three-dimensional geometries. The function of sensitivity analysis is to directly couple computational fluid dynamics (CFD) with numerical optimization techniques, which facilitates the construction of efficient direct-design methods. The development of a practical three-dimensional design procedures entails many challenges, such as: (1) the demand for significant efficiency improvements over current design methods; (2) a general and flexible three-dimensional surface representation; and (3) the efficient solution of very large systems of linear algebraic equations. It is demonstrated that each of these challenges is overcome by: (1) employing fully implicit (Newton) methods for the CFD analyses; (2) adopting a Bezier-Bernstein polynomial parameterization of two- and three-dimensional surfaces; and (3) using preconditioned conjugate gradient-like linear system solvers. Whereas each of these extensions independently yields an improvement in computational efficiency, the combined effect of implementing all the extensions simultaneously results in a significant factor of 50 decrease in computational time and a factor of eight reduction in memory over the most efficient design strategies in current use. The new aerodynamic shape optimization procedure is demonstrated in the design of both two- and three-dimensional inviscid aerodynamic problems including a two-dimensional supersonic internal/external nozzle, two-dimensional transonic airfoils (resulting in supercritical shapes), three-dimensional transonic transport wings, and three-dimensional supersonic delta wings. Each design application results in realistic and useful optimized shapes.
机译:扩展了基于离散灵敏度分析的空气动力学形状优化程序,以处理三维几何形状。灵敏度分析的功能是将计算流体动力学(CFD)与数值优化技术直接耦合,从而有助于构建有效的直接设计方法。实用的三维设计程序的开发面临许多挑战,例如:(1)要求比现有设计方法显着提高效率; (2)通用而灵活的三维表面表示; (3)非常大的线性代数方程组的有效解。事实证明,这些挑战都可以通过以下方式克服:(1)将完全隐式(牛顿)方法用于CFD分析; (2)采用二维和三维表面的Bezier-Bernstein多项式参数化; (3)使用预处理的类似共轭梯度的线性系统求解器。尽管这些扩展中的每一个都独立地提高了计算效率,但同时实现所有扩展的综合效果导致与当前使用的最有效的设计策略相比,计算时间减少了50倍,内存减少了8倍。 。新的空气动力学形状优化程序在二维和三维无粘性空气动力学问题的设计中得到了证明,这些问题包括二维超音速内部/外部喷嘴,二维超音速翼型(产生超临界形状),三维超音速传输机翼和三维超音速三角翼。每个设计应用程序都会产生逼真的有用的优化形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号