首页> 外文学位 >Scattering from chaotic cavities: Exploring the random coupling model in the time and frequency domains.
【24h】

Scattering from chaotic cavities: Exploring the random coupling model in the time and frequency domains.

机译:从混沌腔中散射:在时域和频域中探索随机耦合模型。

获取原文
获取原文并翻译 | 示例

摘要

Scattering waves off resonant structures, with the waves coupling into and out of the structure at a finite number of locations ('ports'), is an extremely common problem both in theory and in real-world applications. In practice, solving for the scattering properties of a particular complex structure is extremely difficult and, in real-world applications, often impractical. In particular, if the wavelength of the incident wave is short compared to the structure size, and the dynamics of the ray trajectories within the scattering region are chaotic, the scattering properties of the cavity will be extremely sensitive to small perturbations. Thus, mathematical models have been developed which attempt to determine the statistical, rather than specific, properties of such systems. One such model is the Random Coupling Model.;The Random Coupling Model was developed primarily in the frequency domain. In the first part of this dissertation, we explore the implications of the Random Coupling Model in the time domain, with emphasis on the time-domain behavior of the power radiated from a single-port lossless cavity after the cavity has been excited by a short initial external pulse. In particular, we find that for times much larger than the cavity's Heisenberg time (the inverse of the average spacing between cavity resonant frequencies), the power from a single cavity decays as a power law in time, following the decay rate of the ensemble average, but eventually transitions into an exponential decay as a single mode in the cavity dominates the decay. We find that this transition from power-law to exponential decay depends only on the shape of the incident pulse and a normalized time.;In the second part of this dissertation, we extend the Random Coupling Model to include a broader range of situations. Previously, the Random Coupling Model applied only to ensembles of scattering data obtained over a sufficiently large spread in frequency or sufficiently different ensemble of configurations. We find that by using the Poisson Kernel, it is possible to obtain meaningful results applicable to situations which vary much less radically in configuration and frequency. We find that it is possible to obtain universal statistics by redefining the radiation impedance parameter of the previously developed Random Coupling Model to include the average effects of certain classical trajectories within the resonant structure. We test these results numerically and find good agreement between theory and simulation.
机译:在理论上和实际应用中,从共振结构中散射出的波在有限数量的位置(“端口”)处耦合进出结构是一个非常普遍的问题。实际上,解决特定复杂结构的散射特性极其困难,在实际应用中通常不切实际。特别地,如果入射波的波长比结构尺寸短,并且散射区域内的射线轨迹的动力学是混乱的,则空腔的散射特性将对小扰动极其敏感。因此,已经开发出试图确定这种系统的统计性质而不是特定性质的数学模型。一种这样的模型是随机耦合模型。随机耦合模型主要是在频域中开发的。在本文的第一部分中,我们探讨了随机耦合模型在时域中的含义,重点是腔被短时激励后从单端口无损腔辐射的功率的时域行为。初始外部脉冲。特别是,我们发现,对于比腔的海森堡时间(腔共振频率之间的平均间隔的倒数)大得多的时间,来自单个腔的功率会随时间的幂律衰减,并遵循系综平均的衰减率,但最终会转变为指数衰减,因为空腔中的单一模式主导了衰减。我们发现,从幂律到指数衰减的过渡仅取决于入射脉冲的形状和归一化的时间。在本文的第二部分,我们扩展了随机耦合模型,以包括更广泛的情况。以前,随机耦合模型仅适用于在足够大的频率扩展或足够不同的配置集合上获得的散射数据的集合。我们发现通过使用泊松核,可以获得有意义的结果,适用于在配置和频率上变化不大的情况。我们发现有可能通过重新定义先前开发的随机耦合模型的辐射阻抗参数来获得通用统计信息,以将某些经典轨迹的平均效应包括在谐振结构内。我们对这些结果进行了数值测试,并在理论和仿真之间找到了良好的一致性。

著录项

  • 作者

    Hart, James Aamodt.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Physics Electricity and Magnetism.;Physics Acoustics.;Physics Theory.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号