首页> 外文学位 >Nanometer-scale electrochemical synthesis of materials using a scanning tunneling microscope.
【24h】

Nanometer-scale electrochemical synthesis of materials using a scanning tunneling microscope.

机译:使用扫描隧道显微镜对材料进行纳米级电化学合成。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, I have developed an electrochemical STM technique for nanometer-scale synthesis of materials on highly ordered pyrolytic graphite (HOPG). The method is unique to deposit nanostructures of various materials with high lateral precision. The mechanism of nanostructure formation was experimentally decoupled into pit formation and metal deposition. Experimental evidence suggested that metal layer deposited by underpotential deposition (UPD) was dominating metal source for the growth of metal nanostructure. This technique allowed solution exchange to deposit two different metals and monitor spontaneous electrochemical reactions on a nanometer scale. The technique was employed to determine the thickness of self-assembled n-alkanethiolate monolayer on silver nanostructures and provide direct evidence regarding the position of the STM tip with respect to the sample surface. The stability of metal nanostructures was investigated under various conditions. It was found that metal nanostructures were generally stable in their own plating solution and unstable in pure water. The anodic dissolution of silver nanostructures in pure water was strongly inhibited following the formation of n-alkanethiolate self-assembled monolayer on the silver surface. The developed method has potential applications to synthesis of more complex materials such as binary materials. An initial attempt was made to electrochemically synthesize semiconducting cadmium selenide nanostructures using a modification of the metal deposition method.
机译:在本文中,我开发了一种电化学STM技术,用于在高度有序的热解石墨(HOPG)上纳米级合成材料。该方法是独特的,可以以高横向精度沉积各种材料的纳米结构。通过实验将纳米结构形成的机理分解为凹坑形成和金属沉积。实验证据表明,通过欠电位沉积(UPD)沉积的金属层是金属纳米结构生长的主要金属来源。该技术允许溶液交换以沉积两种不同的金属,并在纳米尺度上监测自发的电化学反应。该技术用于确定银纳米结构上自组装正链烷硫醇单层的厚度,并提供有关STM尖端相对于样品表面的位置的直接证据。在各种条件下研究了金属纳米结构的稳定性。已发现金属纳米结构通常在其自身的镀液中稳定,而在纯水中不稳定。在银表面形成正链烷硫醇自组装单层膜后,银纳米结构在纯水中的阳极溶解受到强烈抑制。所开发的方法在合成更复杂的材料(例如二元材料)方面具有潜在的应用。进行了最初的尝试,以使用金属沉积方法的改进方法电化学合成半导体硒化镉纳米结构。

著录项

  • 作者

    Li, Wenjie.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Physical chemistry.;Materials science.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号